These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29856496)

  • 1. Unravelling the Specificity of Laminaribiose Phosphorylase from Paenibacillus sp. YM-1 towards Donor Substrates Glucose/Mannose 1-Phosphate by Using X-ray Crystallography and Saturation Transfer Difference NMR Spectroscopy.
    Kuhaudomlarp S; Walpole S; Stevenson CEM; Nepogodiev SA; Lawson DM; Angulo J; Field RA
    Chembiochem; 2019 Jan; 20(2):181-192. PubMed ID: 29856496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of a GH149 β-(1 → 3) glucan phosphorylase reveals a new surface oligosaccharide binding site and additional domains that are absent in the disaccharide-specific GH94 glucose-β-(1 → 3)-glucose (laminaribiose) phosphorylase.
    Kuhaudomlarp S; Stevenson CEM; Lawson DM; Field RA
    Proteins; 2019 Oct; 87(10):885-892. PubMed ID: 31134667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural dissection of the reaction mechanism of cellobiose phosphorylase.
    Hidaka M; Kitaoka M; Hayashi K; Wakagi T; Shoun H; Fushinobu S
    Biochem J; 2006 Aug; 398(1):37-43. PubMed ID: 16646954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of a novel GH94 glycoside phosphorylase, 3-O-β-d-glucopyranosyl β-d-glucuronide phosphorylase, and implication of the metabolic pathway of acidic carbohydrates in Paenibacillus borealis.
    Isono N; Mizutani E; Hayashida H; Katsuzaki H; Saburi W
    Biochem Biophys Res Commun; 2022 Oct; 625():60-65. PubMed ID: 35947916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a bacterial laminaribiose phosphorylase.
    Kitaoka M; Matsuoka Y; Mori K; Nishimoto M; Hayashi K
    Biosci Biotechnol Biochem; 2012; 76(2):343-8. PubMed ID: 22313784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis.
    Hamura K; Saburi W; Matsui H; Mori H
    Carbohydr Res; 2013 Sep; 379():21-5. PubMed ID: 23845516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic catalysis in crystals of Escherichia coli maltodextrin phosphorylase.
    Geremia S; Campagnolo M; Schinzel R; Johnson LN
    J Mol Biol; 2002 Sep; 322(2):413-23. PubMed ID: 12217700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using D-glucal as donor substrate.
    Wildberger P; Brecker L; Nidetzky B
    Carbohydr Res; 2012 Jul; 356():224-32. PubMed ID: 22591555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.
    Taguchi Y; Saburi W; Imai R; Mori H
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1512-1519. PubMed ID: 28537141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group.
    Sawano T; Saburi W; Hamura K; Matsui H; Mori H
    FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases.
    Macdonald SS; Armstrong Z; Morgan-Lang C; Osowiecka M; Robinson K; Hallam SJ; Withers SG
    Cell Chem Biol; 2019 Jul; 26(7):1001-1012.e5. PubMed ID: 31080075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate-binding architecture of the multi-modular α-1,6-glucosyltransferase from
    Fujimoto Z; Suzuki N; Kishine N; Ichinose H; Momma M; Kimura A; Funane K
    Biochem J; 2017 Aug; 474(16):2763-2778. PubMed ID: 28698247
    [No Abstract]   [Full Text] [Related]  

  • 14. Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis.
    O'Neill EC; Pergolizzi G; Stevenson CEM; Lawson DM; Nepogodiev SA; Field RA
    Carbohydr Res; 2017 Nov; 451():118-132. PubMed ID: 28760417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides.
    Nihira T; Saito Y; Kitaoka M; Nishimoto M; Otsubo K; Nakai H
    Carbohydr Res; 2012 Nov; 361():49-54. PubMed ID: 22982171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization and X-ray diffraction studies of cellobiose phosphorylase from Cellulomonas uda.
    Van Hoorebeke A; Stout J; Kyndt J; De Groeve M; Dix I; Desmet T; Soetaert W; Van Beeumen J; Savvides SN
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Mar; 66(Pt 3):346-51. PubMed ID: 20208178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sucrose Phosphorylase and Related Enzymes in Glycoside Hydrolase Family 13: Discovery, Application and Engineering.
    Franceus J; Desmet T
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32260541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of solabiose phosphorylase and its application for enzymatic synthesis of solabiose from sucrose and lactose.
    Saburi W; Nihira T; Nakai H; Kitaoka M; Mori H
    Sci Rep; 2022 Jan; 12(1):259. PubMed ID: 34997180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isomaltooligosaccharide-binding structure of
    Fujimoto Z; Kishine N; Suzuki N; Suzuki R; Mizushima D; Momma M; Kimura K; Funane K
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28385816
    [No Abstract]   [Full Text] [Related]  

  • 20. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).
    Han R; Liu L; Shin HD; Chen RR; Du G; Chen J
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5851-60. PubMed ID: 23129181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.