BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29856630)

  • 1. Ethylene Carbonate-Based Electrolyte Decomposition and Solid-Electrolyte Interphase Formation on Ca Metal Anodes.
    Young J; Smeu M
    J Phys Chem Lett; 2018 Jun; 9(12):3295-3300. PubMed ID: 29856630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries.
    Intan NN; Pfaendtner J
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8169-8180. PubMed ID: 33587593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O
    Xu S; Luo G; Jacobs R; Fang S; Mahanthappa MK; Hamers RJ; Morgan D
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20545-20553. PubMed ID: 28557415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrolyte decomposition on Li-metal surfaces from first-principles theory.
    Ebadi M; Brandell D; Araujo CM
    J Chem Phys; 2016 Nov; 145(20):204701. PubMed ID: 27908145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.
    Camacho-Forero LE; Balbuena PB
    Phys Chem Chem Phys; 2017 Nov; 19(45):30861-30873. PubMed ID: 29135003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries.
    Gomez-Ballesteros JL; Balbuena PB
    J Phys Chem Lett; 2017 Jul; 8(14):3404-3408. PubMed ID: 28686447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic dual electrolyte additives for fluoride rich solid-electrolyte interface on Li metal anode surface: Mechanistic understanding of electrolyte decomposition.
    Pan SH; Nachimuthu S; Hwang BJ; Brunklaus G; Jiang JC
    J Colloid Interface Sci; 2023 Nov; 649():804-814. PubMed ID: 37390528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes.
    Leung K; Budzien JL
    Phys Chem Chem Phys; 2010 Jul; 12(25):6583-6. PubMed ID: 20502786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study.
    Okuno Y; Ushirogata K; Sodeyama K; Tateyama Y
    Phys Chem Chem Phys; 2016 Mar; 18(12):8643-53. PubMed ID: 26948716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.
    Li Y; Leung K; Qi Y
    Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes.
    Yang Y; Xiong J; Lai S; Zhou R; Zhao M; Geng H; Zhang Y; Fang Y; Li C; Zhao J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6118-6125. PubMed ID: 30652854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational study of electron transport in dynamic tetrahydrofuran and ethylene carbonate solvents on a Ca metal anode.
    Batzinger K; Liepinya D; Smeu M
    Phys Chem Chem Phys; 2024 Feb; 26(6):5218-5225. PubMed ID: 38261375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodium-Ion Battery.
    Liu Q; Mu D; Wu B; Wang L; Gai L; Wu F
    ChemSusChem; 2017 Feb; 10(4):786-796. PubMed ID: 27897399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling the Role of Li
    He J; Wang H; Zhou Q; Qi S; Wu M; Li F; Hu W; Ma J
    Small Methods; 2021 Aug; 5(8):e2100441. PubMed ID: 34927858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction mechanisms of additives on Si anodes of Li-ion batteries.
    Martínez de la Hoz JM; Balbuena PB
    Phys Chem Chem Phys; 2014 Aug; 16(32):17091-8. PubMed ID: 25005133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries.
    Young BT; Heskett DR; Nguyen CC; Nie M; Woicik JC; Lucht BL
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20004-11. PubMed ID: 26305165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential decomposition of the major anion in a dual-salt electrolyte facilitates the formation of organic-inorganic composite solid electrolyte interphase.
    Qi F; Yu P; Zhou Q; Liu Y; Sun Q; Ma B; Ren X; Cheng T
    J Chem Phys; 2023 Mar; 158(10):104704. PubMed ID: 36922150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example.
    Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C
    ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plating and Stripping Calcium Metal in Potassium Hexafluorophosphate Electrolyte toward a Stable Hybrid Solid Electrolyte Interphase.
    Chando PA; Shellhamer JM; Wall E; He W; Hosein ID
    ACS Appl Energy Mater; 2023 Apr; 6(7):3924-3932. PubMed ID: 37064409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes.
    Kamphaus EP; Angarita-Gomez S; Qin X; Shao M; Engelhard M; Mueller KT; Murugesan V; Balbuena PB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31467-31476. PubMed ID: 31368685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.