These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29856706)

  • 1. A Fully Integrated Quartz MEMS VHF TCXO.
    Kubena RL; Stratton FP; Nguyen HD; Kirby DJ; Chang DT; Joyce RJ; Yong YK; Garstecki JF; Cross MD; Seman SE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):904-910. PubMed ID: 29856706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency overtone TCXO based on mixing of dual crystal oscillators.
    Huang X; Wei W; Tan F; Fu W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1103-7. PubMed ID: 17571809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications.
    Lim J; Kim H; Jackson T; Choi K; Kenny D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):1906-14. PubMed ID: 20875980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method to Increase the Frequency Stability of a TCXO by Compensating Thermal Hysteresis.
    Wang Z; Wu J
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip.
    Islam MS; Wei R; Lee J; Xie Y; Mandal S; Feng PX
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Tunable-Gain Transimpedance Amplifier for CMOS-MEMS Resonators Characterization.
    Perelló-Roig R; Verd J; Bota S; Segura J
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wafer Scale Integration of CMOS Chips for Biomedical Applications via Self-Aligned Masking.
    Uddin A; Milaninia K; Chen CH; Theogarajan L
    IEEE Trans Compon Packaging Manuf Technol; 2011 Dec; 1(12):1996-2004. PubMed ID: 22400126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial MEMS process.
    Merdassi A; Yang P; Chodavarapu VP
    Sensors (Basel); 2015 Mar; 15(4):7349-59. PubMed ID: 25815451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ±0.3 ppm Oven-Controlled MEMS Oscillator Using Structural Resistance-Based Temperature Sensing.
    Liu CS; Tabrizian R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1492-1499. PubMed ID: 29993545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Power MEMS-Based Pierce Oscillator Using a 61-MHz Capacitive-Gap Disk Resonator.
    Naing TL; Rocheleau TO; Alon E; Nguyen CT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1377-1391. PubMed ID: 31995483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wafer-Level Vacuum Packaging of Smart Sensors.
    Hilton A; Temple DS
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27809249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the Close-to-Carrier Phase Noise in a CMOS-MEMS Oscillator Using a Phase Tunable Sustaining-Amplifier.
    Sobreviela G; Riverola M; Torres F; Uranga A; Barniol N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 May; 64(5):888-897. PubMed ID: 28207393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.
    Rai S; Su Y; Pang W; Ruby R; Otis B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):552-61. PubMed ID: 20211770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer.
    Hamzah AA; Yunas J; Majlis BY; Ahmad I
    Sensors (Basel); 2008 Nov; 8(11):7438-7452. PubMed ID: 27873938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 0.35-μm CMOS-MEMS Oscillator for High-Resolution Distributed Mass Detection.
    Perelló-Roig R; Verd J; Barceló J; Bota S; Segura J
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 300-MHz digitally compensated SAW oscillator.
    Cowan WD; Slobodnik AR; Roberts GA; Silva JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):380-5. PubMed ID: 18290163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium-niobate-based surface acoustic wave oscillator directly integrated with CMOS sustaining amplifier.
    Tanaka S; Park K; Esashi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1800-5. PubMed ID: 22899126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CMOS-MEMS BEOL 2-axis Lorentz-Force Magnetometer with Device-Level Offset Cancellation.
    Sánchez-Chiva JM; Valle J; Fernández D; Madrenas J
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermomechanical Noise Characterization in Fully Monolithic CMOS-MEMS Resonators.
    Perelló-Roig R; Verd J; Bota S; Segura J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30223610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oven-Controlled MEMS Oscillator with Integrated Micro-Evaporation Trimming.
    Pei B; Sun K; Yang H; Ye C; Zhong P; Yu T; Li X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32331277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.