These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2985672)

  • 1. Algorithms for removing recovery-related distortion from auditory-nerve discharge patterns.
    Miller MI
    J Acoust Soc Am; 1985 Apr; 77(4):1452-64. PubMed ID: 2985672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical study of cochlear nerve discharge patterns in response to complex speech stimuli.
    Miller MI; Mark KE
    J Acoust Soc Am; 1992 Jul; 92(1):202-9. PubMed ID: 1324958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A closed-form solution for removing the dead time effects from the poststimulus time histograms.
    Bi Q
    J Acoust Soc Am; 1989 Jun; 85(6):2504-13. PubMed ID: 2745875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian model selection and minimum description length estimation of auditory-nerve discharge rates.
    Mark KE; Miller MI
    J Acoust Soc Am; 1992 Feb; 91(2):989-1002. PubMed ID: 1313465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratio of variance to mean of action potential counts for an auditory nerve fiber model with second-order refractory behavior.
    Gaumond RP
    J Acoust Soc Am; 1993 Apr; 93(4 Pt 1):2035-7. PubMed ID: 8473615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the extraction of the signal-excitation function from a non-Poisson cochlear neural spike train.
    Jones K; Tubis A; Burns EM
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 1):90-4. PubMed ID: 2991355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of cochlear nerve fibers to brief acoustic stimuli: role of discharge-history effects.
    Gaumond RP; Kim DO; Molnar CE
    J Acoust Soc Am; 1983 Nov; 74(5):1392-8. PubMed ID: 6643851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of spike discharge history on discharge probability and latency in frog basilar papilla units.
    Ronken DA; Bosch WR; Molnar CE
    Hear Res; 1993 Sep; 69(1-2):55-75. PubMed ID: 8226350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation in a revised inner-hair cell model.
    Sumner CJ; Lopez-Poveda EA; O'Mard LP; Meddis R
    J Acoust Soc Am; 2003 Feb; 113(2):893-901. PubMed ID: 12597183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transmission of signals by auditory-nerve fiber discharge patterns.
    Johnson DH; Swami A
    J Acoust Soc Am; 1983 Aug; 74(2):493-501. PubMed ID: 6311884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivities of cells in anteroventral cochlear nucleus of cat to spatiotemporal discharge patterns across primary afferents.
    Carney LH
    J Neurophysiol; 1990 Aug; 64(2):437-56. PubMed ID: 2213126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discharge-rate dependence of refractory behavior of cat auditory-nerve fibers.
    Li J; Young ED
    Hear Res; 1993 Sep; 69(1-2):151-62. PubMed ID: 8226336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of spike trains in auditory nerves with self-exciting point processes of the von Mises type.
    Mino H
    Biol Cybern; 2019 Jun; 113(3):347-356. PubMed ID: 31004189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spectral shaping of neural discharges by refractory effects.
    Edwards BW; Wakefield GH; Powers NL
    J Acoust Soc Am; 1993 Jun; 93(6):3353-64. PubMed ID: 8326062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability.
    Gaumond RP; Molnar CE; Kim DO
    J Neurophysiol; 1982 Sep; 48(3):856-73. PubMed ID: 6290620
    [No Abstract]   [Full Text] [Related]  

  • 16. The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones.
    Johnson DH
    J Acoust Soc Am; 1980 Oct; 68(4):1115-22. PubMed ID: 7419827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new stochastic model for auditory-nerve discharge.
    Miller MI; Wang J
    J Acoust Soc Am; 1993 Oct; 94(4):2093-107. PubMed ID: 7901251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-spike timing of auditory-nerve fibers and comparison with auditory cortex.
    Heil P; Irvine DR
    J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal responses of primarylike anteroventral cochlear nucleus units to the steady-state vowel /i/.
    Winter IM; Palmer AR
    J Acoust Soc Am; 1990 Sep; 88(3):1437-41. PubMed ID: 2172345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship of post-stimulus time and interval histograms to the timing characteristics of spike trains.
    Johnson DH
    Biophys J; 1978 Jun; 22(3):413-30. PubMed ID: 208679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.