These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 29856723)
1. Hyperelastic Tuning of One-Dimensional Phononic Band Gaps Using Directional Stress. Demcenko A; Mazilu M; Wilson R; Volker AWF; Cooper JM IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1056-1061. PubMed ID: 29856723 [TBL] [Abstract][Full Text] [Related]
2. Ultrasonic waves in uniaxially stressed multilayered and one-dimensional phononic structures: Guided and Floquet wave analysis. Demčenko A; Wilson R; Cooper JM; Mazilu M; Volker AWF J Acoust Soc Am; 2018 Jul; 144(1):81. PubMed ID: 30075637 [TBL] [Abstract][Full Text] [Related]
3. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks. Golub MV; Zhang C J Acoust Soc Am; 2015 Jan; 137(1):238-52. PubMed ID: 25618055 [TBL] [Abstract][Full Text] [Related]
4. Maximizing phononic band gaps in piezocomposite materials by means of topology optimization. Vatanabe SL; Paulino GH; Silva EC J Acoust Soc Am; 2014 Aug; 136(2):494-501. PubMed ID: 25096084 [TBL] [Abstract][Full Text] [Related]
5. Wave localization in two-dimensional porous phononic crystals with one-dimensional aperiodicity. Yan ZZ; Zhang C Ultrasonics; 2012 Jul; 52(5):598-604. PubMed ID: 22218222 [TBL] [Abstract][Full Text] [Related]
6. Complete band gaps in two-dimensional phononic crystal slabs. Khelif A; Aoubiza B; Mohammadi S; Adibi A; Laude V Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046610. PubMed ID: 17155195 [TBL] [Abstract][Full Text] [Related]
7. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity. Merkel A; Tournat V; Gusev V Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023206. PubMed ID: 25215842 [TBL] [Abstract][Full Text] [Related]
8. Harnessing uniaxial tension to tune Poisson's ratio and wave propagation in soft porous phononic crystals: an experimental study. Gao N; Li J; Bao RH; Chen WQ Soft Matter; 2019 Apr; 15(14):2921-2927. PubMed ID: 30694287 [TBL] [Abstract][Full Text] [Related]
9. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals. Chaunsali R; Li F; Yang J Sci Rep; 2016 Aug; 6():30662. PubMed ID: 27477236 [TBL] [Abstract][Full Text] [Related]
10. Soft phononic crystals with deformation-independent band gaps. Zhang P; Parnell WJ Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160865. PubMed ID: 28484331 [TBL] [Abstract][Full Text] [Related]
11. Waves Propagating in Nano-Layered Phononic Crystals with Flexoelectricity, Microstructure, and Micro-Inertia Effects. Zhu J; Hu P; Chen Y; Chen S; Zhang C; Wang Y; Liu D Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407198 [TBL] [Abstract][Full Text] [Related]
12. Band gap of shear horizontal waves for one-dimensional phononic crystals with chiral materials. Dai P; Wang Y; Qin Q; Wang J Phys Rev E; 2024 Feb; 109(2-2):025001. PubMed ID: 38491652 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system. Hsieh PF; Wu TT; Sun JH IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):148-58. PubMed ID: 16471441 [TBL] [Abstract][Full Text] [Related]
14. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals. Yang S; Liu Y Ultrasonics; 2018 Aug; 88():193-206. PubMed ID: 29679888 [TBL] [Abstract][Full Text] [Related]
15. Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals. Ponge MF; Croënne C; Vasseur JO; Bou Matar O; Hladky-Hennion AC; Dubus B J Acoust Soc Am; 2016 Jun; 139(6):3288. PubMed ID: 27369153 [TBL] [Abstract][Full Text] [Related]
16. Systematic topology optimization of solid-solid phononic crystals for multiple separate band-gaps with different polarizations. Liu ZF; Wu B; He CF Ultrasonics; 2016 Feb; 65():249-57. PubMed ID: 26456279 [TBL] [Abstract][Full Text] [Related]
17. Generalized eigenproblem of hybrid matrix for Floquet wave propagation in one-dimensional phononic crystals with solids and fluids. Tan EL Ultrasonics; 2010 Jan; 50(1):91-8. PubMed ID: 19850313 [TBL] [Abstract][Full Text] [Related]
18. Systematic design of phononic band-gap materials and structures by topology optimization. Sigmund O; Jensen JS Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):1001-19. PubMed ID: 12804226 [TBL] [Abstract][Full Text] [Related]
19. Design guidelines of 1-3 piezoelectric composites dedicated to ultrasound imaging transducers, based on frequency band-gap considerations. Wilm M; Khelif A; Laude V; Ballandras S J Acoust Soc Am; 2007 Aug; 122(2):786-93. PubMed ID: 17672629 [TBL] [Abstract][Full Text] [Related]
20. Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L). Cheng Y; Liu XJ; Wu DJ J Acoust Soc Am; 2011 Mar; 129(3):1157-60. PubMed ID: 21428478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]