BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29856856)

  • 1. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight.
    Chen L; Heng J; Qin S; Bian K
    PLoS One; 2018; 13(6):e0198560. PubMed ID: 29856856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects.
    Zaid DS; Cai S; Hu C; Li Z; Li Y
    Microbiol Spectr; 2022 Feb; 10(1):e0216921. PubMed ID: 35107331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2.
    Chen L; Shi H; Heng J; Wang D; Bian K
    Microbiol Res; 2019 Jan; 218():41-48. PubMed ID: 30454657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles.
    Palazzini JM; Dunlap CA; Bowman MJ; Chulze SN
    Microbiol Res; 2016 Nov; 192():30-36. PubMed ID: 27664721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease.
    Cai XC; Liu CH; Wang BT; Xue YR
    Microbiol Res; 2017 Mar; 196():89-94. PubMed ID: 28164794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2.
    Su Z; Chen X; Liu X; Guo Q; Li S; Lu X; Zhang X; Wang P; Dong L; Zhao W; Ma P
    BMC Genomics; 2020 Nov; 21(1):767. PubMed ID: 33153447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive genomic analysis of Bacillus velezensis AL7 reveals its biocontrol potential against Verticillium wilt of cotton.
    Liu H; Zeng Q; Yalimaimaiti N; Wang W; Zhang R; Yao J
    Mol Genet Genomics; 2021 Nov; 296(6):1287-1298. PubMed ID: 34553246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete genome sequence of Bacillus velezensis LM2303, a biocontrol strain isolated from the dung of wild yak inhabited Qinghai-Tibet plateau.
    Chen L
    J Biotechnol; 2017 Jun; 251():124-127. PubMed ID: 28461206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria.
    Liu G; Kong Y; Fan Y; Geng C; Peng D; Sun M
    J Biotechnol; 2017 May; 249():20-24. PubMed ID: 28323017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perception of Biocontrol Potential of
    Kamali M; Guo D; Naeimi S; Ahmadi J
    Biology (Basel); 2022 Jan; 11(1):. PubMed ID: 35053135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tolerance of triazole-based fungicides by biocontrol agents used to control Fusarium head blight in wheat in Argentina.
    Palazzini JM; Torres AM; Chulze SN
    Lett Appl Microbiol; 2018 May; 66(5):434-438. PubMed ID: 29478269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens.
    Chen XH; Koumoutsi A; Scholz R; Schneider K; Vater J; Süssmuth R; Piel J; Borriss R
    J Biotechnol; 2009 Mar; 140(1-2):27-37. PubMed ID: 19041913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus velezensis RC218 and emerging biocontrol agents against Fusarium graminearum and Fusarium poae in barley: in vitro, greenhouse and field conditions.
    Zanon MSA; Cavaglieri LR; Palazzini JM; Chulze SN; Chiotta ML
    Int J Food Microbiol; 2024 Mar; 413():110580. PubMed ID: 38246027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties.
    Bóka B; Manczinger L; Kocsubé S; Shine K; Alharbi NS; Khaled JM; Münsterkötter M; Vágvölgyi C; Kredics L
    World J Microbiol Biotechnol; 2019 Mar; 35(3):52. PubMed ID: 30868269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of
    Li Q; Liao S; Wei J; Xing D; Xiao Y; Yang Q
    Can J Microbiol; 2020 Jun; 66(6):401-412. PubMed ID: 32160477
    [No Abstract]   [Full Text] [Related]  

  • 16. Novel Endophytic
    Gao M; Abdallah MF; Song M; Xu Y; Sun D; Lu P; Wang J
    Toxins (Basel); 2023 Dec; 15(12):. PubMed ID: 38133206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic Analysis and Secondary Metabolites Production of the Endophytic
    Nifakos K; Tsalgatidou PC; Thomloudi EE; Skagia A; Kotopoulis D; Baira E; Delis C; Papadimitriou K; Markellou E; Venieraki A; Katinakis P
    Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete genome sequence of Bacillus velezensis WB, an isolate from the watermelon rhizosphere: genomic insights into its antifungal effects.
    Wang KX; Xu WH; Chen ZN; Hu JL; Luo SQ; Wang ZG
    J Glob Antimicrob Resist; 2022 Sep; 30():442-444. PubMed ID: 35618208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocontrol of
    Yeo YJ; Park AR; Vuong BS; Kim JC
    Front Microbiol; 2024; 15():1358689. PubMed ID: 38915299
    [No Abstract]   [Full Text] [Related]  

  • 20. Surfactin inhibits Fusarium graminearum by accumulating intracellular ROS and inducing apoptosis mechanisms.
    Liang C; Xi-Xi X; Yun-Xiang S; Qiu-Hua X; Yang-Yong L; Yuan-Sen H; Ke B
    World J Microbiol Biotechnol; 2023 Oct; 39(12):340. PubMed ID: 37821760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.