These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29856929)

  • 1. Mechanisms and functional implications of motoneuron adaptations to increased physical activity.
    MacDonell CW; Gardiner PF
    Appl Physiol Nutr Metab; 2018 Nov; 43(11):1186-1193. PubMed ID: 29856929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of exercise training on alpha-motoneurons.
    Gardiner P; Dai Y; Heckman CJ
    J Appl Physiol (1985); 2006 Oct; 101(4):1228-36. PubMed ID: 16778002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptations of motoneuron properties after weight-lifting training in rats.
    Krutki P; Mrówczyński W; Bączyk M; Łochyński D; Celichowski J
    J Appl Physiol (1985); 2017 Sep; 123(3):664-673. PubMed ID: 28596267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endurance training alters the biophysical properties of hindlimb motoneurons in rats.
    Beaumont E; Gardiner PF
    Muscle Nerve; 2003 Feb; 27(2):228-36. PubMed ID: 12548531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscular endurance training and motor unit firing patterns during fatigue.
    Mettler JA; Griffin L
    Exp Brain Res; 2016 Jan; 234(1):267-76. PubMed ID: 26449966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices.
    Gabriel DA; Kamen G; Frost G
    Sports Med; 2006; 36(2):133-49. PubMed ID: 16464122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural influences on sprint running: training adaptations and acute responses.
    Ross A; Leveritt M; Riek S
    Sports Med; 2001; 31(6):409-25. PubMed ID: 11394561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-to-slow conversion following chronic low-frequency activation of medial gastrocnemius muscle in cats. II. Motoneuron properties.
    Munson JB; Foehring RC; Mendell LM; Gordon T
    J Neurophysiol; 1997 May; 77(5):2605-15. PubMed ID: 9163379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of type-identified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle. II. Motoneuron firing-rate modulation.
    Tansey KE; Botterman BR
    J Neurophysiol; 1996 Jan; 75(1):38-50. PubMed ID: 8822540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training adaptations in the behavior of human motor units.
    Duchateau J; Semmler JG; Enoka RM
    J Appl Physiol (1985); 2006 Dec; 101(6):1766-75. PubMed ID: 16794023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endurance-exercise training adaptations in spinal motoneurones: potential functional relevance to locomotor output and assessment in humans.
    Power KE; Lockyer EJ; Botter A; Vieira T; Button DC
    Eur J Appl Physiol; 2022 Jun; 122(6):1367-1381. PubMed ID: 35226169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men.
    Wilhelm EN; Rech A; Minozzo F; Botton CE; Radaelli R; Teixeira BC; Reischak-Oliveira A; Pinto RS
    Exp Gerontol; 2014 Dec; 60():207-14. PubMed ID: 25449853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human neuromuscular adaptations that accompany changes in activity.
    McComas AJ
    Med Sci Sports Exerc; 1994 Dec; 26(12):1498-509. PubMed ID: 7869885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of exercise and training on motor unit activation.
    Sale DG
    Exerc Sport Sci Rev; 1987; 15():95-151. PubMed ID: 3297731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of motoneurons in the generation of muscle spasms after spinal cord injury.
    Gorassini MA; Knash ME; Harvey PJ; Bennett DJ; Yang JF
    Brain; 2004 Oct; 127(Pt 10):2247-58. PubMed ID: 15342360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-density surface EMG study on the time course of central nervous and peripheral neuromuscular changes during 8 weeks of bed rest with or without resistive vibration exercise.
    Mulder ER; Gerrits KH; Kleine BU; Rittweger J; Felsenberg D; de Haan A; Stegeman DF
    J Electromyogr Kinesiol; 2009 Apr; 19(2):208-18. PubMed ID: 17560125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration.
    Christie A; Kamen G
    Muscle Nerve; 2010 May; 41(5):651-60. PubMed ID: 19941348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent hypoxia improves endurance performance and submaximal exercise efficiency.
    Katayama K; Matsuo H; Ishida K; Mori S; Miyamura M
    High Alt Med Biol; 2003; 4(3):291-304. PubMed ID: 14561235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor-unit properties following cross-reinnervation of cat lateral gastrocnemius and soleus muscles with medial gastrocnemius nerve. II. Influence of muscle on motoneurons.
    Foehring RC; Sypert GW; Munson JB
    J Neurophysiol; 1987 Apr; 57(4):1227-45. PubMed ID: 3585462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions.
    Adam A; De Luca CJ
    J Appl Physiol (1985); 2005 Jul; 99(1):268-80. PubMed ID: 16036904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.