These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 29856981)
1. N-terminal and central domains of APC function to regulate branch number, length and angle in developing optic axonal arbors in vivo. Jin T; Peng G; Wu E; Mendiratta S; Elul T Brain Res; 2018 Oct; 1697():34-44. PubMed ID: 29856981 [TBL] [Abstract][Full Text] [Related]
3. Microinjection of DNA into Eyebuds in Xenopus laevis Embryos and Imaging of GFP Expressing Optic Axonal Arbors in Intact, Living Xenopus Tadpoles. Dao S; Jones K; Elul T J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545319 [TBL] [Abstract][Full Text] [Related]
4. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101 [TBL] [Abstract][Full Text] [Related]
5. N- and C-terminal domains of beta-catenin, respectively, are required to initiate and shape axon arbors of retinal ganglion cells in vivo. Elul TM; Kimes NE; Kohwi M; Reichardt LF J Neurosci; 2003 Jul; 23(16):6567-75. PubMed ID: 12878698 [TBL] [Abstract][Full Text] [Related]
6. Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations. Sakaguchi DS; Murphey RK J Neurosci; 1985 Dec; 5(12):3228-45. PubMed ID: 3001241 [TBL] [Abstract][Full Text] [Related]
7. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo. Lom B; Cogen J; Sanchez AL; Vu T; Cohen-Cory S J Neurosci; 2002 Sep; 22(17):7639-49. PubMed ID: 12196587 [TBL] [Abstract][Full Text] [Related]
8. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors. Schmidt JT; Turcotte JC; Buzzard M; Tieman DG J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728 [TBL] [Abstract][Full Text] [Related]
9. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity. Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382 [TBL] [Abstract][Full Text] [Related]
10. Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain. Manitt C; Nikolakopoulou AM; Almario DR; Nguyen SA; Cohen-Cory S J Neurosci; 2009 Sep; 29(36):11065-77. PubMed ID: 19741113 [TBL] [Abstract][Full Text] [Related]
11. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. Edwards JA; Cline HT J Neurophysiol; 1999 Feb; 81(2):895-907. PubMed ID: 10036287 [TBL] [Abstract][Full Text] [Related]
12. DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target. Santos RA; Del Rio R; Alvarez AD; Romero G; Vo BZ; Cohen-Cory S Neural Dev; 2022 Apr; 17(1):5. PubMed ID: 35422013 [TBL] [Abstract][Full Text] [Related]
13. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. Nakamura H; O'Leary DD J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055 [TBL] [Abstract][Full Text] [Related]
14. Dynamic responses of Xenopus retinal ganglion cell axon growth cones to netrin-1 as they innervate their in vivo target. Shirkey NJ; Manitt C; Zuniga L; Cohen-Cory S Dev Neurobiol; 2012 Apr; 72(4):628-48. PubMed ID: 21858928 [TBL] [Abstract][Full Text] [Related]
15. Netrin-1 directs dendritic growth and connectivity of vertebrate central neurons in vivo. Nagel AN; Marshak S; Manitt C; Santos RA; Piercy MA; Mortero SD; Shirkey-Son NJ; Cohen-Cory S Neural Dev; 2015 Jun; 10():14. PubMed ID: 26058786 [TBL] [Abstract][Full Text] [Related]
16. GAP43 phosphorylation is critical for growth and branching of retinotectal arbors in zebrafish. Leu B; Koch E; Schmidt JT Dev Neurobiol; 2010 Nov; 70(13):897-911. PubMed ID: 20669323 [TBL] [Abstract][Full Text] [Related]
17. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors. Witte S; Stier H; Cline HT J Neurobiol; 1996 Oct; 31(2):219-34. PubMed ID: 8885202 [TBL] [Abstract][Full Text] [Related]
18. Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission. O'Rourke NA; Cline HT; Fraser SE Neuron; 1994 Apr; 12(4):921-34. PubMed ID: 8161460 [TBL] [Abstract][Full Text] [Related]
19. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo. Hu B; Nikolakopoulou AM; Cohen-Cory S Development; 2005 Oct; 132(19):4285-98. PubMed ID: 16141221 [TBL] [Abstract][Full Text] [Related]
20. Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study. O'Rourke NA; Fraser SE Neuron; 1990 Aug; 5(2):159-71. PubMed ID: 2383399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]