These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 29857044)
1. Modified equation for particle bonding area and strength with inclusion of powder fragmentation propensity. Lamešić D; Planinšek O; Ilić IG Eur J Pharm Sci; 2018 Aug; 121():218-227. PubMed ID: 29857044 [TBL] [Abstract][Full Text] [Related]
2. The effect of particle fragmentation and deformation on the interparticulate bond formation process during powder compaction. Eriksson M; Alderborn G Pharm Res; 1995 Jul; 12(7):1031-9. PubMed ID: 7494798 [TBL] [Abstract][Full Text] [Related]
3. The compressibility and compactibility of different types of lactose. Ilić I; Kása P; Dreu R; Pintye-Hódi K; Srcic S Drug Dev Ind Pharm; 2009 Oct; 35(10):1271-80. PubMed ID: 19466896 [TBL] [Abstract][Full Text] [Related]
4. Spherical agglomerates of lactose with enhanced mechanical properties. Lamešić D; Planinšek O; Lavrič Z; Ilić I Int J Pharm; 2017 Jan; 516(1-2):247-257. PubMed ID: 27866980 [TBL] [Abstract][Full Text] [Related]
5. Relationships between the effective interparticulate contact area and the tensile strength of tablets of amorphous and crystalline lactose of varying particle size. Sebhatu T; Alderborn G Eur J Pharm Sci; 1999 Aug; 8(4):235-42. PubMed ID: 10425373 [TBL] [Abstract][Full Text] [Related]
6. Effects of Particle Surface Roughness on In-Die Flow and Tableting Behavior of Lactose. Tay JYS; Kok BWT; Liew CV; Heng PWS J Pharm Sci; 2019 Sep; 108(9):3011-3019. PubMed ID: 31054886 [TBL] [Abstract][Full Text] [Related]
7. Effect of surface energy on powder compactibility. Fichtner F; Mahlin D; Welch K; Gaisford S; Alderborn G Pharm Res; 2008 Dec; 25(12):2750-9. PubMed ID: 18548337 [TBL] [Abstract][Full Text] [Related]
8. Effect of degree of methoxylation and particle size on compression properties and compactibility of pectin powders. Salbu L; Bauer-Brandl A; Alderborn G; Tho I Pharm Dev Technol; 2012; 17(3):333-43. PubMed ID: 21142830 [TBL] [Abstract][Full Text] [Related]
9. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology. Podczeck F; Drake KR; Newton JM Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836 [TBL] [Abstract][Full Text] [Related]
10. Study of the compaction mechanisms of lactose-based direct compression excipients using indentation hardness and Heckel plots. Monedero Perales MD; Muñoz-Ruiz A; Velasco Antequera MV; Jiménez-Castellanos Ballesteros MR J Pharm Pharmacol; 1994 Mar; 46(3):177-81. PubMed ID: 8027923 [TBL] [Abstract][Full Text] [Related]
11. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures. Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142 [TBL] [Abstract][Full Text] [Related]
12. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation. Grote S; Kleinebudde P Pharm Dev Technol; 2019 Mar; 24(3):314-322. PubMed ID: 29757067 [TBL] [Abstract][Full Text] [Related]
14. Percolation theory and compactibility of binary powder systems. Blattner D; Kolb M; Leuenberger H Pharm Res; 1990 Feb; 7(2):113-7. PubMed ID: 2308890 [TBL] [Abstract][Full Text] [Related]
15. [Study on effect of SuperTab 40LL on compression characteristics of musk sustained-release mini-tablets based on mathematical models]. Li WS; Huang PW; Zhang YT; Zhang YJ; Wang Z; Feng NP Zhongguo Zhong Yao Za Zhi; 2021 Oct; 46(19):4978-4985. PubMed ID: 34738392 [TBL] [Abstract][Full Text] [Related]
16. The suitability of common compressibility equations for characterizing plasticity of diverse powders. Paul S; Sun CC Int J Pharm; 2017 Oct; 532(1):124-130. PubMed ID: 28844895 [TBL] [Abstract][Full Text] [Related]
17. Predictions of tensile strength of binary tablets using linear and power law mixing rules. Michrafy A; Michrafy M; Kadiri MS; Dodds JA Int J Pharm; 2007 Mar; 333(1-2):118-26. PubMed ID: 17097245 [TBL] [Abstract][Full Text] [Related]
18. Comparative analyses of flow and compaction properties of diverse mannitol and lactose grades. Paul S; Chang SY; Dun J; Sun WJ; Wang K; Tajarobi P; Boissier C; Sun CC Int J Pharm; 2018 Jul; 546(1-2):39-49. PubMed ID: 29705102 [TBL] [Abstract][Full Text] [Related]
19. Changes in the specific surface area of tablets composed of pharmaceutical materials with various deformation behaviors. Busignies V; Leclerc B; Truchon S; Tchoreloff P Drug Dev Ind Pharm; 2011 Feb; 37(2):225-33. PubMed ID: 20653462 [TBL] [Abstract][Full Text] [Related]
20. Modeling the effects of material properties on tablet compaction: A building block for controlling both batch and continuous pharmaceutical manufacturing processes. Escotet-Espinoza MS; Vadodaria S; Singh R; Muzzio FJ; Ierapetritou MG Int J Pharm; 2018 May; 543(1-2):274-287. PubMed ID: 29567195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]