These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 29857130)
1. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Wu S; Du W; Duan Y; Zhang D; Liu Y; Wu B; Zou X; Ouyang H; Gao C Acta Biomater; 2018 Jul; 75():75-92. PubMed ID: 29857130 [TBL] [Abstract][Full Text] [Related]
2. Directional migration of vascular smooth muscle cells guided by a molecule weight gradient of poly(2-hydroxyethyl methacrylate) brushes. Ren T; Mao Z; Guo J; Gao C Langmuir; 2013 May; 29(21):6386-95. PubMed ID: 23634666 [TBL] [Abstract][Full Text] [Related]
3. Complementary density gradient of Poly(hydroxyethyl methacrylate) and YIGSR selectively guides migration of endotheliocytes. Ren T; Yu S; Mao Z; Moya SE; Han L; Gao C Biomacromolecules; 2014 Jun; 15(6):2256-64. PubMed ID: 24836023 [TBL] [Abstract][Full Text] [Related]
4. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts. Yu S; Zuo X; Shen T; Duan Y; Mao Z; Gao C Acta Biomater; 2018 May; 72():70-81. PubMed ID: 29635070 [TBL] [Abstract][Full Text] [Related]
5. Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: ligand co-presentation and 3D-localization. Desseaux S; Klok HA Biomaterials; 2015 Mar; 44():24-35. PubMed ID: 25617123 [TBL] [Abstract][Full Text] [Related]
6. Selective Adhesion and Directional Migration of Endothelial Cells Guided by Cys-Ala-Gly Peptide Density Gradient on Antifouling Polymer Brushes. Du W; Gao C Macromol Biosci; 2019 Nov; 19(11):e1900292. PubMed ID: 31517437 [TBL] [Abstract][Full Text] [Related]
7. RGD-Functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells. Tugulu S; Silacci P; Stergiopulos N; Klok HA Biomaterials; 2007 Jun; 28(16):2536-46. PubMed ID: 17321591 [TBL] [Abstract][Full Text] [Related]
8. Controlling the migration behaviors of vascular smooth muscle cells by methoxy poly(ethylene glycol) brushes of different molecular weight and density. Wu J; Mao Z; Gao C Biomaterials; 2012 Jan; 33(3):810-20. PubMed ID: 22048007 [TBL] [Abstract][Full Text] [Related]
9. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of Schwann cells. Ren T; Yu S; Mao Z; Gao C Biomaterials; 2015 Jul; 56():58-67. PubMed ID: 25934279 [TBL] [Abstract][Full Text] [Related]
10. Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. Sivkova R; Táborská J; Reparaz A; de Los Santos Pereira A; Kotelnikov I; Proks V; Kučka J; Svoboda J; Riedel T; Pop-Georgievski O Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32947982 [TBL] [Abstract][Full Text] [Related]
11. Improving the cellular invasion into PHEMA sponges by incorporation of the RGD peptide ligand: the use of copolymerization as a means to functionalize PHEMA sponges. Paterson SM; Shadforth AM; Shaw JA; Brown DH; Chirila TV; Baker MV Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4917-22. PubMed ID: 24094205 [TBL] [Abstract][Full Text] [Related]
12. RGD Nanoarrays with Nanospacing Gradient Selectively Induce Orientation and Directed Migration of Endothelial and Smooth Muscle Cells. He J; Shen R; Liu Q; Zheng S; Wang X; Gao J; Wang Q; Huang J; Ding J ACS Appl Mater Interfaces; 2022 Aug; 14(33):37436-37446. PubMed ID: 35943249 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes. Ren T; Mao Z; Moya SE; Gao C Chem Asian J; 2014 Aug; 9(8):2132-9. PubMed ID: 24962678 [TBL] [Abstract][Full Text] [Related]
14. Cell Adhesion and Migration on Thickness Gradient Bilayer Polymer Brush Surfaces: Effects of Properties of Polymeric Materials of the Underlayer. Afzali Z; Matsushita T; Kogure A; Masuda T; Azuma T; Kushiro K; Kasama T; Miyake R; Takai M ACS Appl Mater Interfaces; 2022 Jan; 14(2):2605-2617. PubMed ID: 35001615 [TBL] [Abstract][Full Text] [Related]
15. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Ibanescu SA; Nowakowska J; Khanna N; Landmann R; Klok HA Macromol Biosci; 2016 May; 16(5):676-85. PubMed ID: 26757483 [TBL] [Abstract][Full Text] [Related]
16. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality. Lei Z; Gao J; Liu X; Liu D; Wang Z ACS Appl Mater Interfaces; 2016 Apr; 8(16):10174-82. PubMed ID: 27049528 [TBL] [Abstract][Full Text] [Related]
17. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Klok HA Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007 [TBL] [Abstract][Full Text] [Related]
18. Preparation of an Arg-Glu-Asp-Val Peptide Density Gradient on Hyaluronic Acid-Coated Poly(ε-caprolactone) Film and Its Influence on the Selective Adhesion and Directional Migration of Endothelial Cells. Yu S; Gao Y; Mei X; Ren T; Liang S; Mao Z; Gao C ACS Appl Mater Interfaces; 2016 Nov; 8(43):29280-29288. PubMed ID: 27723284 [TBL] [Abstract][Full Text] [Related]
20. [Effect of modification of titanium surfaces to graft poly(ethylene glycol)methacrylate-arginine-glycine-aspartic polymer brushes on bacterial adhesion and osteoblast cell attachment]. Liu D; Gong YJ; Xiao Q; Li ZA Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Aug; 51(8):491-5. PubMed ID: 27511041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]