BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29857190)

  • 1. NMR methods to dissect the molecular mechanisms of disease-related mutations (DRMs): Understanding how DRMs remodel functional free energy landscapes.
    Byun JA; Melacini G
    Methods; 2018 Sep; 148():19-27. PubMed ID: 29857190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.
    Boulton S; Selvaratnam R; Ahmed R; Melacini G
    Methods Mol Biol; 2018; 1688():391-405. PubMed ID: 29151219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tool set to map allosteric networks through the NMR chemical shift covariance analysis.
    Boulton S; Akimoto M; Selvaratnam R; Bashiri A; Melacini G
    Sci Rep; 2014 Dec; 4():7306. PubMed ID: 25482377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CHESPA/CHESCA-SPARKY: automated NMR data analysis plugins for SPARKY to map protein allostery.
    Shao H; Boulton S; Olivieri C; Mohamed H; Akimoto M; Subrahmanian MV; Veglia G; Markley JL; Melacini G; Lee W
    Bioinformatics; 2021 May; 37(8):1176-1177. PubMed ID: 32926121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population shuffling between ground and high energy excited states.
    Sabo TM; Trent JO; Lee D
    Protein Sci; 2015 Nov; 24(11):1714-9. PubMed ID: 26316263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the signs of 1H(alpha) chemical shift differences between ground and excited protein states by off-resonance spin-lock R(1rho) NMR spectroscopy.
    Auer R; Neudecker P; Muhandiram DR; Lundström P; Hansen DF; Konrat R; Kay LE
    J Am Chem Soc; 2009 Aug; 131(31):10832-3. PubMed ID: 19606858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping allostery through the covariance analysis of NMR chemical shifts.
    Selvaratnam R; Chowdhury S; VanSchouwen B; Melacini G
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6133-8. PubMed ID: 21444788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of core allosteric sites through temperature- and nucleus-invariant chemical shift covariance.
    Mohamed H; Baryar U; Bashiri A; Selvaratnam R; VanSchouwen B; Melacini G
    Biophys J; 2022 Jun; 121(11):2035-2045. PubMed ID: 35538664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving biomolecular motion and interactions by R
    Walinda E; Morimoto D; Sugase K
    Methods; 2018 Sep; 148():28-38. PubMed ID: 29704666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional dynamics in cyclic nucleotide signaling and amyloid inhibition.
    VanSchouwen B; Ahmed R; Milojevic J; Melacini G
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1529-1543. PubMed ID: 28911813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing RNA Excited States Using NMR Relaxation Dispersion.
    Xue Y; Kellogg D; Kimsey IJ; Sathyamoorthy B; Stein ZW; McBrairty M; Al-Hashimi HM
    Methods Enzymol; 2015; 558():39-73. PubMed ID: 26068737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of NMR and computational methodologies to study protein dynamics.
    Narayanan C; Bafna K; Roux LD; Agarwal PK; Doucet N
    Arch Biochem Biophys; 2017 Aug; 628():71-80. PubMed ID: 28483383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Allostery and Conformational Dynamics.
    Guo J; Zhou HX
    Chem Rev; 2016 Jun; 116(11):6503-15. PubMed ID: 26876046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies.
    Roche J; Dellarole M; Royer CA; Roumestand C
    Subcell Biochem; 2015; 72():261-78. PubMed ID: 26174386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation.
    Boulton S; Melacini G
    Chem Rev; 2016 Jun; 116(11):6267-304. PubMed ID: 27111288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences.
    Jarymowycz VA; Stone MJ
    Chem Rev; 2006 May; 106(5):1624-71. PubMed ID: 16683748
    [No Abstract]   [Full Text] [Related]  

  • 19. Studying allosteric regulation in metal sensor proteins using computational methods.
    Chakravorty DK; Merz KM
    Adv Protein Chem Struct Biol; 2014; 96():181-218. PubMed ID: 25443958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.