BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29857224)

  • 1. Environmentally available biowastes as substrate in microbial fuel cell for efficient chromium reduction.
    Sindhuja M; Harinipriya S; Bala AC; Ray AK
    J Hazard Mater; 2018 Aug; 355():197-205. PubMed ID: 29857224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.
    Gangadharan P; Nambi IM
    Water Sci Technol; 2015; 71(3):353-8. PubMed ID: 25714633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.
    Tandukar M; Huber SJ; Onodera T; Pavlostathis SG
    Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of organic matter removal and electricity generation by using integrated microbial fuel cells for wastewater treatment.
    Yamashita T; Ishida M; Ogino A; Yokoyama H
    Environ Technol; 2016; 37(2):228-36. PubMed ID: 26118304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries.
    Shakoori AR; Makhdoom M; Haq RU
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):348-51. PubMed ID: 10772478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Cr (VI) concentration on Cr (VI) reduction and electricity production in microbial fuel cell.
    Zhang X; Liu Y; Li C
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):54170-54176. PubMed ID: 34405326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.
    Song TS; Jin Y; Bao J; Kang D; Xie J
    J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of soak liquor and bioelectricity generation in dual chamber microbial fuel cell.
    Sathishkumar K; Narenkumar J; Selvi A; Murugan K; Babujanarthanam R; Rajasekar A
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11424-11430. PubMed ID: 29423696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge.
    Ryu EY; Kim M; Lee SJ
    J Microbiol Biotechnol; 2011 Feb; 21(2):187-91. PubMed ID: 21364302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronous detoxification and reduction treatment of tannery sludge using Cr (VI) resistant bacterial strains.
    Liu H; Wang Y; Zhang H; Huang G; Yang Q; Wang Y
    Sci Total Environ; 2019 Oct; 687():34-40. PubMed ID: 31202011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigation of tannery effluent with simultaneous generation of bioenergy using dual chambered microbial fuel cell.
    Chauhan S; Sharma V; Varjani S; Sindhu R; Chaturvedi Bhargava P
    Bioresour Technol; 2022 May; 351():127084. PubMed ID: 35358671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial diversity in the Cr(VI) reducing biocathode of a Microbial Fuel Cell with salt bridge.
    Revelo Romo DM; Hurtado Gutiérrez NH; Ruiz Pazos JO; Pabón Figueroa LV; Ordóñez Ordóñez LA
    Rev Argent Microbiol; 2019; 51(2):110-118. PubMed ID: 30144991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.
    Wu X; Zhu X; Song T; Zhang L; Jia H; Wei P
    Bioresour Technol; 2015 Mar; 180():185-91. PubMed ID: 25603528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium (VI) reduction by cell free extract of Ochrobactrum anthropi isolated from tannery effluent.
    Sultan S; Hasnain S
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):152-7. PubMed ID: 22526999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights on hexavalent chromium(VI) remediation strategies in abiotic and biotic dual chamber microbial fuel cells: electrochemical, physical, and metagenomics characterizations.
    Khater DZ; Amin RS; Fetohi AE; Mahmoud M; El-Khatib KM
    Sci Rep; 2023 Nov; 13(1):20184. PubMed ID: 37978236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.
    Zhang D; Li Z; Zhang C; Zhou X; Xiao Z; Awata T; Katayama A
    J Biosci Bioeng; 2017 Mar; 123(3):364-369. PubMed ID: 27979700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater.
    Kim JR; Zuo Y; Regan JM; Logan BE
    Biotechnol Bioeng; 2008 Apr; 99(5):1120-7. PubMed ID: 17972328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of anode and anolyte community growth and the impact of impedance in a microbial fuel cell.
    Sanchez-Herrera D; Pacheco-Catalan D; Valdez-Ojeda R; Canto-Canche B; Dominguez-Benetton X; Domínguez-Maldonado J; Alzate-Gaviria L
    BMC Biotechnol; 2014 Dec; 14():102. PubMed ID: 25487741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid crystal polaroid glass electrode from e-waste for synchronized removal/recovery of Cr(+6) from wastewater by microbial fuel cell.
    Gangadharan P; Nambi IM; Senthilnathan J
    Bioresour Technol; 2015 Nov; 195():96-101. PubMed ID: 26130291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and reduction mechanism of Cr (VI) in Leersia hexandra Swartz constructed wetland-microbial fuel cell coupling system.
    Shi Y; Liu Q; Wu G; Zhao S; Li Y; You S; Huang G
    Ecotoxicol Environ Saf; 2024 Jun; 277():116373. PubMed ID: 38653023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.