These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 29857232)
21. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Liang CC; Li T; Xiao YP; Liu MJ; Zhang HB; Zhao ZW Int J Phytoremediation; 2009; 11(8):692-703. PubMed ID: 19810598 [TBL] [Abstract][Full Text] [Related]
22. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory. Cleland RE; Buckley G; Nowbar S; Lew NM; Stinemetz C; Evans ML; Rayle DL Planta; 1991; 186():70-4. PubMed ID: 11538124 [TBL] [Abstract][Full Text] [Related]
23. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Anwar S; Khan S; Ashraf MY; Noman A; Zafar S; Liu L; Ullah S; Fahad S Int J Phytoremediation; 2017 Jun; 19(6):505-513. PubMed ID: 27819494 [TBL] [Abstract][Full Text] [Related]
24. [Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation change in rhizosphere]. Huang Y; Chen Y; Tao S Ying Yong Sheng Tai Xue Bao; 2002 Jul; 13(7):859-62. PubMed ID: 12385219 [TBL] [Abstract][Full Text] [Related]
25. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Bi X; Feng X; Yang Y; Li X; Shin GP; Li F; Qiu G; Li G; Liu T; Fu Z Environ Pollut; 2009 Mar; 157(3):834-9. PubMed ID: 19100668 [TBL] [Abstract][Full Text] [Related]
26. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Javed MT; Akram MS; Tanwir K; Javed Chaudhary H; Ali Q; Stoltz E; Lindberg S Ecotoxicol Environ Saf; 2017 Jul; 141():216-225. PubMed ID: 28349873 [TBL] [Abstract][Full Text] [Related]
27. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Hadi F; Bano A; Fuller MP Chemosphere; 2010 Jun; 80(4):457-62. PubMed ID: 20435330 [TBL] [Abstract][Full Text] [Related]
28. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
29. The electrical response of maize to auxins. Felle H; Peters W; Palme K Biochim Biophys Acta; 1991 May; 1064(2):199-204. PubMed ID: 1827995 [TBL] [Abstract][Full Text] [Related]
30. Architectural and biochemical changes in embryonic tissues of maize under cadmium toxicity. Wahid A; Khaliq S Plant Biol (Stuttg); 2015 Sep; 17(5):1005-12. PubMed ID: 25732002 [TBL] [Abstract][Full Text] [Related]
31. Short-term effects of plant hormones on membrane potential and membrane permeability of dwarf maize coleoptile cells (Zea mays L. d 1) in comparison with growth responses. Nelles A Planta; 1977 Jan; 137(3):293-8. PubMed ID: 24420668 [TBL] [Abstract][Full Text] [Related]
32. Exploring the survival tactics and plant growth promising traits of root-associated bacterial strains under Cd and Pb stress: A modelling based approach. Lal S; Kumar R; Ahmad S; Dixit VK; Berta G Ecotoxicol Environ Saf; 2019 Apr; 170():267-277. PubMed ID: 30529922 [TBL] [Abstract][Full Text] [Related]
33. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123 [TBL] [Abstract][Full Text] [Related]
34. Suppressive effects of thermal-treated oyster shells on cadmium and copper translocation in maize plants. Wang C; Alidoust D; Isoda A; Li M Environ Sci Pollut Res Int; 2017 Aug; 24(23):19347-19356. PubMed ID: 28669096 [TBL] [Abstract][Full Text] [Related]
35. Cadmium-induced sulfate uptake in maize roots. Nocito FF; Pirovano L; Cocucci M; Sacchi GA Plant Physiol; 2002 Aug; 129(4):1872-9. PubMed ID: 12177501 [TBL] [Abstract][Full Text] [Related]
36. The effect of cadmium-nickel interactions on superoxide production, cell viability and membrane potential (EM) in roots of two maize cultivars. Fiala R; Repka V; Čiamporová M; Martinka M; Pavlovkin J Acta Biol Hung; 2015 Jun; 66(2):192-204. PubMed ID: 26081275 [TBL] [Abstract][Full Text] [Related]
37. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Rizvi A; Khan MS Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647 [TBL] [Abstract][Full Text] [Related]
38. Silicon influence on maize, Zea mays L., hybrids exposed to cadmium treatment. Lukacová Kuliková Z; Lux A Bull Environ Contam Toxicol; 2010 Sep; 85(3):243-50. PubMed ID: 20563865 [TBL] [Abstract][Full Text] [Related]
39. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Liu L; Li J; Yue F; Yan X; Wang F; Bloszies S; Wang Y Chemosphere; 2018 Mar; 194():495-503. PubMed ID: 29241123 [TBL] [Abstract][Full Text] [Related]
40. The Effect of Naphthazarin on the Growth, Electrogenicity, Oxidative Stress, and Microtubule Array in Rudnicka M; Ludynia M; Karcz W Front Plant Sci; 2018; 9():1940. PubMed ID: 30671078 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]