These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29857253)

  • 21. Yolk-Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity.
    Hong W; Ge P; Jiang Y; Yang L; Tian Y; Zou G; Cao X; Hou H; Ji X
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10829-10840. PubMed ID: 30801168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Partial Sulfuration Strategy Derived Multi-Yolk-Shell Structure for Ultra-Stable K/Na/Li-ion Storage.
    Shi X; Gan Y; Zhang Q; Wang C; Zhao Y; Guan L; Huang W
    Adv Mater; 2021 Aug; 33(33):e2100837. PubMed ID: 34242441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries.
    Guo S; Hu X; Hou Y; Wen Z
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42084-42092. PubMed ID: 29120163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-heteroatom-doped dual carbon-confined Fe
    Tao X; Li Y; Wang HG; Lv X; Li Y; Xu D; Jiang Y; Meng Y
    J Colloid Interface Sci; 2020 Apr; 565():494-502. PubMed ID: 31982716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous Core-Shell CuCo
    Zheng T; Li G; Meng X; Li S; Ren M
    Chemistry; 2019 Jan; 25(3):885-891. PubMed ID: 30412335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Yolk-Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithium-Ion Batteries.
    Zhang L; Wang C; Dou Y; Cheng N; Cui D; Du Y; Liu P; Al-Mamun M; Zhang S; Zhao H
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8824-8828. PubMed ID: 31050110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries.
    Jiang L; Qu Y; Ren Z; Yu P; Zhao D; Zhou W; Wang L; Fu H
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1595-601. PubMed ID: 25569599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoSâ‚‚ Nanocrystals for Improved Na-Ion Storage Capabilities.
    Choi SH; Kang YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24694-702. PubMed ID: 26484615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Supported CoP Nanorod Arrays Grafted on Stainless Steel as an Advanced Integrated Anode for Stable and Long-Life Lithium-Ion Batteries.
    Xu X; Liu J; Hu R; Liu J; Ouyang L; Zhu M
    Chemistry; 2017 Apr; 23(22):5198-5204. PubMed ID: 28261892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silicon/Mesoporous Carbon/Crystalline TiO
    Luo W; Wang Y; Wang L; Jiang W; Chou SL; Dou SX; Liu HK; Yang J
    ACS Nano; 2016 Nov; 10(11):10524-10532. PubMed ID: 27786460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MXene-encapsulated hollow Fe
    Guo Y; Zhang D; Yang Y; Wang Y; Bai Z; Chu PK; Luo Y
    Nanoscale; 2021 Mar; 13(8):4624-4633. PubMed ID: 33605964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Green Fabrication of Silkworm Cocoon-like Silicon-Based Composite for High-Performance Li-Ion Batteries.
    Du FH; Ni Y; Wang Y; Wang D; Ge Q; Chen S; Yang HY
    ACS Nano; 2017 Sep; 11(9):8628-8635. PubMed ID: 28800223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries.
    Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D
    Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material.
    He C; Wu S; Zhao N; Shi C; Liu E; Li J
    ACS Nano; 2013 May; 7(5):4459-69. PubMed ID: 23614734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yolk-Shell TiO
    Qiu S; Xiao L; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):345-353. PubMed ID: 27959498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing the Void Size of Yolk-Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries.
    Yang H; Chen LW; He F; Zhang J; Feng Y; Zhao L; Wang B; He L; Zhang Q; Yu Y
    Nano Lett; 2020 Jan; 20(1):758-767. PubMed ID: 31868367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries.
    Zhang W; Li X; Liang J; Tang K; Zhu Y; Qian Y
    Nanoscale; 2016 Feb; 8(8):4733-41. PubMed ID: 26859122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery.
    Li X; Xing Y; Xu J; Deng Q; Shao LH
    Chem Commun (Camb); 2020 Jan; 56(3):364-367. PubMed ID: 31802084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorine-ion-regulated yolk-shell carbon-silicon anode material for high performance lithium ion batteries.
    Liu C; Wang Z; Wang Q; Bai J; Wang H; Liu X
    J Colloid Interface Sci; 2024 Aug; 668():666-677. PubMed ID: 38703514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-Dimensional Yolk-Shell Sb@Ti-O-P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries.
    Wang N; Bai Z; Qian Y; Yang J
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):447-454. PubMed ID: 27982561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.