These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29857274)

  • 81. [Fast identification of rifampicin-and isoniazid resistance of M. Tuberculosis strains by the "TB-biochip" test system].
    Isakova ZhT
    Georgian Med News; 2008 May; (158):15-9. PubMed ID: 18560033
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Risk of acquisition of RFP resistance out of INH resistant RFP susceptible tuberculosis].
    Yoshiyama T; Ito K; Ogata H; Aono A; Wada M
    Kekkaku; 2005 Jan; 80(1):9-14. PubMed ID: 15839057
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Antitubercular Nanocarrier Combination Therapy: Formulation Strategies and in Vitro Efficacy for Rifampicin and SQ641.
    D'Addio SM; Reddy VM; Liu Y; Sinko PJ; Einck L; Prud'homme RK
    Mol Pharm; 2015 May; 12(5):1554-63. PubMed ID: 25811733
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Assessing Pharmacodynamic Interactions in Mice Using the Multistate Tuberculosis Pharmacometric and General Pharmacodynamic Interaction Models.
    Chen C; Wicha SG; de Knegt GJ; Ortega F; Alameda L; Sousa V; de Steenwinkel JEM; Simonsson USH
    CPT Pharmacometrics Syst Pharmacol; 2017 Nov; 6(11):787-797. PubMed ID: 28657202
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Long-term tolerance and effectiveness of moxifloxacin therapy for tuberculosis: preliminary results.
    Valerio G; Bracciale P; Manisco V; Quitadamo M; Legari G; Bellanova S
    J Chemother; 2003 Feb; 15(1):66-70. PubMed ID: 12678417
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Assessing the Combined Antibacterial Effect of Isoniazid and Rifampin on Four Mycobacterium tuberculosis Strains Using
    Genestet C; Ader F; Pichat C; Lina G; Dumitrescu O; Goutelle S
    Antimicrob Agents Chemother; 2018 Jan; 62(1):. PubMed ID: 29061753
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Isoniazid derivatives and their anti-tubercular activity.
    Hu YQ; Zhang S; Zhao F; Gao C; Feng LS; Lv ZS; Xu Z; Wu X
    Eur J Med Chem; 2017 Jun; 133():255-267. PubMed ID: 28390957
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Design of Isoniazid Smart Nanogel by Gamma Radiation-Induced Template Polymerization for Biomedical Application.
    Omar SM; Maziad NA; El-Tantawy NM
    Pharm Res; 2017 Sep; 34(9):1872-1885. PubMed ID: 28620888
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Preventing drug-resistant tuberculosis with a fixed dose combination of isoniazid and rifampin.
    Moulding TS; Le HQ; Rikleen D; Davidson P
    Int J Tuberc Lung Dis; 2004 Jun; 8(6):743-8. PubMed ID: 15182145
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Tailored release drug delivery system for rifampicin and isoniazid for enhanced bioavailability of rifampicin.
    Avachat AM; Bhise SB
    Pharm Dev Technol; 2011 Apr; 16(2):127-36. PubMed ID: 20105081
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Comparison of line probe assay to BACTEC MGIT 960 system for susceptibility testing of first and second-line anti-tuberculosis drugs in a referral laboratory in South Africa.
    Maningi NE; Malinga LA; Antiabong JF; Lekalakala RM; Mbelle NM
    BMC Infect Dis; 2017 Dec; 17(1):795. PubMed ID: 29282012
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide.
    Saifullah B; Arulselvan P; El Zowalaty ME; Fakurazi S; Webster TJ; Geilich BM; Hussein MZ
    Int J Nanomedicine; 2014; 9():4749-62. PubMed ID: 25336952
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Polymeric nanobiotics as a novel treatment for mycobacterial infections.
    Batalha IL; Bernut A; Schiebler M; Ouberai MM; Passemar C; Klapholz C; Kinna S; Michel S; Sader K; Castro-Hartmann P; Renshaw SA; Welland ME; Floto RA
    J Control Release; 2019 Nov; 314():116-124. PubMed ID: 31647980
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effective cerebral tuberculosis treatment
    Jadhav K; Jhilta A; Singh R; Ray E; Kumar V; Yadav AB; Singh AK; Verma RK
    Nanoscale; 2024 Sep; 16(35):16485-16499. PubMed ID: 39135488
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Controllable release of pirfenidone by polyvinyl alcohol film embedded soft contact lenses
    Wu C; Or PW; Chong JIT; K Pathirage Don IK; Lee CHC; Wu K; Yu M; Lam DCC; Yang Y
    Drug Deliv; 2021 Dec; 28(1):634-641. PubMed ID: 33779455
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Polyurethane-functionalized starch nanocrystals as anti-tuberculosis drug carrier.
    Desai SK; Mondal D; Bera S
    Sci Rep; 2021 Apr; 11(1):8331. PubMed ID: 33859215
    [TBL] [Abstract][Full Text] [Related]  

  • 97. 3D-Printed Titanium Cage with PVA-Vancomycin Coating Prevents Surgical Site Infections (SSIs).
    Li Y; Li L; Ma Y; Zhang K; Li G; Lu B; Lu C; Chen C; Wang L; Wang H; Cui X
    Macromol Biosci; 2020 Mar; 20(3):e1900394. PubMed ID: 32065462
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Microencapsulated Isoniazid-Loaded Metal-Organic Frameworks for Pulmonary Administration of Antituberculosis Drugs.
    Fernández-Paz C; Fernández-Paz E; Salcedo-Abraira P; Rojas S; Barrios-Esteban S; Csaba N; Horcajada P; Remuñán-López C
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770817
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Controlled-release approaches towards the chemotherapy of tuberculosis.
    Saifullah B; Hussein MZ; Hussein Al Ali SH
    Int J Nanomedicine; 2012; 7():5451-63. PubMed ID: 23091386
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Designing coordination polymers as multi-drug-self-delivery systems for tuberculosis and cancer therapy:
    Biswas P; Datta HK; Dastidar P
    Biomater Sci; 2022 Oct; 10(21):6201-6216. PubMed ID: 36097681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.