These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29857285)

  • 61. Surface display of redox enzymes in microbial fuel cells.
    Fishilevich S; Amir L; Fridman Y; Aharoni A; Alfonta L
    J Am Chem Soc; 2009 Sep; 131(34):12052-3. PubMed ID: 19663383
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A biofuel cell harvesting energy from glucose-air and fruit juice-air.
    Liu Y; Dong S
    Biosens Bioelectron; 2007 Nov; 23(4):593-7. PubMed ID: 17720474
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell.
    Coman V; Vaz-Domínguez C; Ludwig R; Harreither W; Haltrich D; De Lacey AL; Ruzgas T; Gorton L; Shleev S
    Phys Chem Chem Phys; 2008 Oct; 10(40):6093-6. PubMed ID: 18846297
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enzymatic biofuel cell based on anode and cathode powered by ethanol.
    Ramanavicius A; Kausaite A; Ramanaviciene A
    Biosens Bioelectron; 2008 Dec; 24(4):767-72. PubMed ID: 18693008
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes.
    Boland S; Leech D
    Analyst; 2012 Jan; 137(1):113-7. PubMed ID: 22022699
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design of a mediated enzymatic fuel cell to generate power from renewable fuel sources.
    Korkut S; Kilic MS
    Environ Technol; 2016; 37(2):163-71. PubMed ID: 26102352
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Metabolic control analysis of an enzymatic biofuel cell.
    Glykys DJ; Banta S
    Biotechnol Bioeng; 2009 Apr; 102(6):1624-35. PubMed ID: 19061242
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A 96-well electrochemical method for the screening of enzymatic activities.
    Abdellaoui S; Noiriel A; Henkens R; Bonaventura C; Blum LJ; Doumèche B
    Anal Chem; 2013 Apr; 85(7):3690-7. PubMed ID: 23461701
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Laccase activity from the fungus Trametes hirsuta using an air-lift bioreactor.
    Rodríguez Couto S; Rodríguez A; Paterson RR; Lima N; Teixeira JA
    Lett Appl Microbiol; 2006 Jun; 42(6):612-6. PubMed ID: 16706901
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan.
    Cabana H; Ahamed A; Leduc R
    Bioresour Technol; 2011 Jan; 102(2):1656-62. PubMed ID: 20951581
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals.
    Maryšková M; Ardao I; García-González CA; Martinová L; Rotková J; Ševců A
    Enzyme Microb Technol; 2016 Jul; 89():31-8. PubMed ID: 27233125
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.
    Hou B; Hu Y; Sun J
    Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Oxygen availability effect on the performance of air-breathing cathode microbial fuel cell.
    Mateo S; Rodrigo M; Fonseca LP; Cañizares P; Fernandez-Morales FJ
    Biotechnol Prog; 2015; 31(4):900-7. PubMed ID: 25962613
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bioelectrocatalytic O(2) reduction with a laccase-bearing poly(3-methylthiophene) film based on direct electron transfer from the polymer to laccase.
    Kuwahara T; Asano T; Kondo M; Shimomura M
    Bioelectrochemistry; 2013 Jun; 91():28-31. PubMed ID: 23353116
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel laccase from white rot fungus Trametes orientalis: Purification, characterization, and application.
    Zheng F; An Q; Meng G; Wu XJ; Dai YC; Si J; Cui BK
    Int J Biol Macromol; 2017 Sep; 102():758-770. PubMed ID: 28455255
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chitosan improves stability of carbon nanotube biocathodes for glucose biofuel cells.
    El Ichi S; Zebda A; Laaroussi A; Reverdy-Bruas N; Chaussy D; Naceur Belgacem M; Cinquin P; Martin DK
    Chem Commun (Camb); 2014 Dec; 50(93):14535-8. PubMed ID: 25307267
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
    Xia X; Tokash JC; Zhang F; Liang P; Huang X; Logan BE
    Environ Sci Technol; 2013 Feb; 47(4):2085-91. PubMed ID: 23360098
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Degradation of phenanthrene by Trametes versicolor and its laccase.
    Han MJ; Choi HT; Song HG
    J Microbiol; 2004 Jun; 42(2):94-8. PubMed ID: 15357301
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.
    Pöller S; Beyl Y; Vivekananthan J; Guschin DA; Schuhmann W
    Bioelectrochemistry; 2012 Oct; 87():178-84. PubMed ID: 22209452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.