These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 29857563)

  • 1. Progress of Inertial Microfluidics in Principle and Application.
    Gou Y; Jia Y; Wang P; Sun C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial microfluidics: Recent advances.
    Huang D; Man J; Jiang D; Zhao J; Xiang N
    Electrophoresis; 2020 Oct; ():. PubMed ID: 33027533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channel innovations for inertial microfluidics.
    Tang W; Zhu S; Jiang D; Zhu L; Yang J; Xiang N
    Lab Chip; 2020 Oct; 20(19):3485-3502. PubMed ID: 32910129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress of inertial microfluidic-based cell separation.
    Xu X; Huang X; Sun J; Wang R; Yao J; Han W; Wei M; Chen J; Guo J; Sun L; Yin M
    Analyst; 2021 Nov; 146(23):7070-7086. PubMed ID: 34761757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory inertial focusing in infinite microchannels.
    Mutlu BR; Edd JF; Toner M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial Microfluidics Enabling Clinical Research.
    Kalyan S; Torabi C; Khoo H; Sung HW; Choi SE; Wang W; Treutler B; Kim D; Hur SC
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33802356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamentals and applications of inertial microfluidics: a review.
    Zhang J; Yan S; Yuan D; Alici G; Nguyen NT; Ebrahimi Warkiani M; Li W
    Lab Chip; 2016 Jan; 16(1):10-34. PubMed ID: 26584257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.
    Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial focusing in microfluidics.
    Martel JM; Toner M
    Annu Rev Biomed Eng; 2014 Jul; 16():371-96. PubMed ID: 24905880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles.
    Al-Ali A; Waheed W; Abu-Nada E; Alazzam A
    J Chromatogr A; 2022 Aug; 1676():463268. PubMed ID: 35779391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle focusing by 3D inertial microfluidics.
    Paiè P; Bragheri F; Di Carlo D; Osellame R
    Microsyst Nanoeng; 2017; 3():17027. PubMed ID: 31057868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dean flow-coupled inertial focusing in curved channels.
    Ramachandraiah H; Ardabili S; Faridi AM; Gantelius J; Kowalewski JM; Mårtensson G; Russom A
    Biomicrofluidics; 2014 May; 8(3):034117. PubMed ID: 25379077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial microfluidics in parallel channels for high-throughput applications.
    Hansson J; Karlsson JM; Haraldsson T; Brismar H; van der Wijngaart W; Russom A
    Lab Chip; 2012 Nov; 12(22):4644-50. PubMed ID: 22930164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Manipulation of Non-Spherical Particles in Microfluidic Channels: A Review.
    Jiang D; Liu S; Tang W
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput viscoelastic particle focusing and separation in spiral microchannels.
    Kumar T; Ramachandraiah H; Iyengar SN; Banerjee I; Mårtensson G; Russom A
    Sci Rep; 2021 Apr; 11(1):8467. PubMed ID: 33875755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Vortex Regulation for Efficient Fluid and Particle Manipulation in Ultra-Low Aspect Ratio Curved Microchannels.
    Shen S; Wang X; Niu Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34199145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.