These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 29857563)

  • 21. Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows.
    Jing W; Han HS
    Anal Chem; 2022 Mar; 94(9):3978-3986. PubMed ID: 35195992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inertial microfluidics: current status, challenges, and future opportunities.
    Xiang N; Ni Z
    Lab Chip; 2022 Dec; 22(24):4792-4804. PubMed ID: 36263793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.
    Zhang Y; Zhang J; Tang F; Li W; Wang X
    Anal Chem; 2018 Feb; 90(3):1786-1794. PubMed ID: 29297226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical Study of Multivortex Regulation in Curved Microchannels with Ultra-Low-Aspect-Ratio.
    Shen S; Gao M; Zhang F; Niu Y
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33466925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning assisted fast prediction of inertial lift in microchannels.
    Su J; Chen X; Zhu Y; Hu G
    Lab Chip; 2021 Jun; 21(13):2544-2556. PubMed ID: 33998624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inertial microfluidics for high-throughput cell analysis and detection: a review.
    Zhou Z; Chen Y; Zhu S; Liu L; Ni Z; Xiang N
    Analyst; 2021 Oct; 146(20):6064-6083. PubMed ID: 34490431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Particle manipulations in non-Newtonian microfluidics: A review.
    Lu X; Liu C; Hu G; Xuan X
    J Colloid Interface Sci; 2017 Aug; 500():182-201. PubMed ID: 28412635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple and rapid separation of Haematococcus pluvialis and ciliate based on the dean-coupled inertial microfluidics.
    Jiang D; Wang L; Liu Y; Huo X; Lin J; Li L
    J Sep Sci; 2022 Oct; 45(20):3900-3908. PubMed ID: 35708024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High throughput-per-footprint inertial focusing.
    Ciftlik AT; Ettori M; Gijs MA
    Small; 2013 Aug; 9(16):2764-73, 2828. PubMed ID: 23420756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture.
    Lu Y; Tan W; Shi X; Liu M; Zhu G
    Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational inertial microfluidics: a review.
    Razavi Bazaz S; Mashhadian A; Ehsani A; Saha SC; Krüger T; Ebrahimi Warkiani M
    Lab Chip; 2020 Mar; 20(6):1023-1048. PubMed ID: 32067001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
    Xiang N; Ni Z; Yi H
    Electrophoresis; 2018 Jan; 39(2):417-424. PubMed ID: 28990196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A generalized formula for inertial lift on a sphere in microchannels.
    Liu C; Xue C; Sun J; Hu G
    Lab Chip; 2016 Mar; 16(5):884-92. PubMed ID: 26794086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inertial microfluidics for sheath-less high-throughput flow cytometry.
    Bhagat AA; Kuntaegowdanahalli SS; Kaval N; Seliskar CJ; Papautsky I
    Biomed Microdevices; 2010 Apr; 12(2):187-95. PubMed ID: 19946752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.