These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 29857563)

  • 41. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface behaviors of droplet manipulation in microfluidics devices.
    Wu L; Guo Z; Liu W
    Adv Colloid Interface Sci; 2022 Oct; 308():102770. PubMed ID: 36113310
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inertial Focusing of Microparticles in Curvilinear Microchannels.
    Özbey A; Karimzadehkhouei M; Akgönül S; Gozuacik D; Koşar A
    Sci Rep; 2016 Dec; 6():38809. PubMed ID: 27991494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics.
    Zhou Y; Ma Z; Ai Y
    Lab Chip; 2020 Feb; 20(3):568-581. PubMed ID: 31894813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A pair of particles in inertial microfluidics: effect of shape, softness, and position.
    Patel K; Stark H
    Soft Matter; 2021 May; 17(18):4804-4817. PubMed ID: 33871511
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stretchable Inertial Microfluidic Device for Tunable Particle Separation.
    Fallahi H; Zhang J; Nicholls J; Phan HP; Nguyen NT
    Anal Chem; 2020 Sep; 92(18):12473-12480. PubMed ID: 32786464
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inertial manipulation and transfer of microparticles across laminar fluid streams.
    Gossett DR; Tse HT; Dudani JS; Goda K; Woods TA; Graves SW; Di Carlo D
    Small; 2012 Sep; 8(17):2757-64. PubMed ID: 22761059
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous inertial focusing, ordering, and separation of particles in microchannels.
    Di Carlo D; Irimia D; Tompkins RG; Toner M
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):18892-7. PubMed ID: 18025477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inertial Focusing and Separation of Particles in Similar Curved Channels.
    Ying Y; Lin Y
    Sci Rep; 2019 Nov; 9(1):16575. PubMed ID: 31719582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfluidic based single cell or droplet manipulation: Methods and applications.
    Lan Y; Zhou Y; Wu M; Jia C; Zhao J
    Talanta; 2023 Dec; 265():124776. PubMed ID: 37348357
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inertial microfluidics: Determining the effect of geometric key parameters on capture efficiency along with a feasibility evaluation for bone marrow cells sorting.
    Ghadiri MM; Hosseini SA; Sadatsakkak SA; Rajabpour A
    Biomed Microdevices; 2021 Aug; 23(3):41. PubMed ID: 34379212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sorting of Particles Using Inertial Focusing and Laminar Vortex Technology: A Review.
    Volpe A; Gaudiuso C; Ancona A
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31510006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Feedback control of inertial microfluidics using axial control forces.
    Prohm C; Stark H
    Lab Chip; 2014 Jun; 14(12):2115-23. PubMed ID: 24811136
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A numerical lift force analysis on the inertial migration of a deformable droplet in steady and oscillatory microchannel flows.
    Lafzi A; Dabiri S
    Lab Chip; 2022 Aug; 22(17):3245-3257. PubMed ID: 35899760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental and numerical study of elasto-inertial focusing in straight channels.
    Raoufi MA; Mashhadian A; Niazmand H; Asadnia M; Razmjou A; Warkiani ME
    Biomicrofluidics; 2019 May; 13(3):034103. PubMed ID: 31123535
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Separation of Ultra-High-Density Cell Suspension via Elasto-Inertial Microfluidics.
    Kwon T; Choi K; Han J
    Small; 2021 Oct; 17(39):e2101880. PubMed ID: 34396694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.