BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29857631)

  • 1. Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides.
    Kim S; Picardal FW
    Environ Toxicol Chem; 1999 Oct; 18(10):2142-2150. PubMed ID: 29857631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EDDS enhanced Shewanella putrefaciens CN32 and α-FeOOH reductive dechlorination of carbon tetrachloride.
    Zhou LY; Chen S; Li H; Guo S; Liu YD; Yang J
    Chemosphere; 2018 May; 198():556-564. PubMed ID: 29422245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments.
    Shao H; Butler EC
    Chemosphere; 2007 Aug; 68(10):1807-13. PubMed ID: 17537483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(II) associated with goethite.
    Maithreepala RA; Doong RA
    Environ Sci Technol; 2004 Jan; 38(1):260-8. PubMed ID: 14740745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reductive dechlorination of carbon tetrachloride by bioreduction of nontronite.
    Bae S; Joo JB; Lee W
    J Hazard Mater; 2017 Jul; 334():104-111. PubMed ID: 28402894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced remediation of carbon tetrachloride by Fe(II)-Fe(III) systems in the presence of copper ions.
    Maithreepala RA; Doong RA
    Water Sci Technol; 2004; 50(8):161-8. PubMed ID: 15566199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200.
    Picardal FW; Arnold RG; Couch H; Little AM; Smith ME
    Appl Environ Microbiol; 1993 Nov; 59(11):3763-70. PubMed ID: 8285682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of carbon tetrachloride and chloroform by trichloroethene respiring anaerobic mixed cultures and supernatant.
    Vickstrom KE; Azizian MF; Semprini L
    Chemosphere; 2017 Sep; 182():65-75. PubMed ID: 28494362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive dechlorination of carbon tetrachloride in aqueous solutions containing ferrous and copper ions.
    Maithreepala RA; Doong RA
    Environ Sci Technol; 2004 Dec; 38(24):6676-84. PubMed ID: 15669327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite.
    Hanoch RJ; Shao H; Butler EC
    Chemosphere; 2006 Apr; 63(2):323-34. PubMed ID: 16154172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of soil minerals on the rates and products of abiotic transformation of carbon tetrachloride in anaerobic soils and sediments.
    Shao H; Butler EC
    Environ Sci Technol; 2009 Mar; 43(6):1896-901. PubMed ID: 19368189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17.
    Li XM; Zhou SG; Li FB; Wu CY; Zhuang L; Xu W; Liu L
    J Appl Microbiol; 2009 Jan; 106(1):130-9. PubMed ID: 19054230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200.
    Picardal F; Arnold RG; Huey BB
    Appl Environ Microbiol; 1995 Jan; 61(1):8-12. PubMed ID: 7887629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.
    Li FB; Li XM; Zhou SG; Zhuang L; Cao F; Huang DY; Xu W; Liu TX; Feng CH
    Environ Pollut; 2010 May; 158(5):1733-40. PubMed ID: 20031285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Shewanella oneidensis on the Kinetics of Fe(II)-Catalyzed Transformation of Ferrihydrite to Crystalline Iron Oxides.
    Xiao W; Jones AM; Li X; Collins RN; Waite TD
    Environ Sci Technol; 2018 Jan; 52(1):114-123. PubMed ID: 29205031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.
    Jin X; Wang F; Gu C; Yang X; Kengara FO; Bian Y; Song Y; Jiang X
    Chemosphere; 2015 Nov; 138():18-24. PubMed ID: 26025430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the role of electron shuttles in reductive transformations in anaerobic sediments.
    Zhang H; Weber EJ
    Environ Sci Technol; 2009 Feb; 43(4):1042-8. PubMed ID: 19320155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.
    Jones ME; Fennessey CM; DiChristina TJ; Taillefert M
    Environ Microbiol; 2010 Apr; 12(4):938-50. PubMed ID: 20089045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioextraction (reductive dissolution) of iron from low-grade iron ores. Fundamental and applied studies.
    DiChristina TJ
    Ann N Y Acad Sci; 1994 May; 721():440-9. PubMed ID: 8010693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.