BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29857706)

  • 1. How the acoustic resonances of the subglottal tract affect the impedance spectrum measured through the lips.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2018 May; 143(5):2639. PubMed ID: 29857706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequencies, bandwidths and magnitudes of vocal tract and surrounding tissue resonances, measured through the lips during phonation.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2016 May; 139(5):2924. PubMed ID: 27250184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vocal Tract and Subglottal Impedance in High Performance Singing: A Case Study.
    Hoyer P; Riedler M; Unterhofer C; Graf S
    J Voice; 2022 Feb; ():. PubMed ID: 35232632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On subglottal formant analysis.
    Cranen B; Boves L
    J Acoust Soc Am; 1987 Mar; 81(3):734-46. PubMed ID: 3584682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations.
    Lehoux S; Hampala V; Švec JG
    Sci Rep; 2021 Jan; 11(1):28. PubMed ID: 33420107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.
    Lulich SM; Arsikere H
    J Acoust Soc Am; 2015 Jun; 137(6):3436-46. PubMed ID: 26093432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vocal tract resonances and the sound of the Australian didjeridu (yidaki) I. experiment.
    Tarnopolsky AZ; Fletcher NH; Hollenberg LC; Lange BD; Smith J; Wolfe J
    J Acoust Soc Am; 2006 Feb; 119(2):1194-204. PubMed ID: 16521780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vocal tract resonances and the sound of the Australian didjeridu (yidaki) II. Theory.
    Fletcher NH; Hollenberg LC; Smith J; Tarnopolsky AZ; Wolfe J
    J Acoust Soc Am; 2006 Feb; 119(2):1205-13. PubMed ID: 16521781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glottal source-vocal tract interaction.
    Koizumi T; Taniguchi S; Hiromitsu S
    J Acoust Soc Am; 1985 Nov; 78(5):1541-7. PubMed ID: 4067067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subglottal pressure oscillations accompanying phonation.
    Sundberg J; Scherer R; Hess M; Müller F; Granqvist S
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic interactions of the voice source with the lower vocal tract.
    Titze IR; Story BH
    J Acoust Soc Am; 1997 Apr; 101(4):2234-43. PubMed ID: 9104025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal Tract Resonance Detection at Low Frequencies: Improving Physical and Transducer Configurations.
    Thilakan J; B T B; P M S; Chen JM
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonances and wave propagation velocity in the subglottal airways.
    Lulich SM; Alwan A; Arsikere H; Morton JR; Sommers MS
    J Acoust Soc Am; 2011 Oct; 130(4):2108-15. PubMed ID: 21973365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclicity of laryngeal cavity resonance due to vocal fold vibration.
    Kitamura T; Takemoto H; Adachi S; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2239-49. PubMed ID: 17069319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of whisper and creak vocal mechanisms on vocal tract resonances.
    Swerdlin Y; Smith J; Wolfe J
    J Acoust Soc Am; 2010 Apr; 127(4):2590-8. PubMed ID: 20370040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An acoustic model of the respiratory tract.
    Harper P; Kraman SS; Pasterkamp H; Wodicka GR
    IEEE Trans Biomed Eng; 2001 May; 48(5):543-50. PubMed ID: 11341528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB; Engebretson AM; Vemula NR
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroglottographic study of seven semi-occluded exercises: LaxVox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth.
    Andrade PA; Wood G; Ratcliffe P; Epstein R; Pijper A; Svec JG
    J Voice; 2014 Sep; 28(5):589-95. PubMed ID: 24560003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.