These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29857720)

  • 1. Psychoacoustic measurements of ipsilateral cochlear gain reduction as a function of signal frequency.
    DeRoy Milvae K; Strickland EA
    J Acoust Soc Am; 2018 May; 143(5):3114. PubMed ID: 29857720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is overshoot caused by an efferent reduction in cochlear gain?
    Fletcher M; de Boer J; Krumbholz K
    Adv Exp Med Biol; 2013; 787():65-72. PubMed ID: 23716210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimates of human cochlear tuning at low levels using forward and simultaneous masking.
    Oxenham AJ; Shera CA
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):541-54. PubMed ID: 14716510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling effects of precursor duration on behavioral estimates of cochlear gain.
    Roverud EM; Strickland EA
    Adv Exp Med Biol; 2013; 787():55-63. PubMed ID: 23716209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of a precursor on growth of forward masking.
    Krull V; Strickland EA
    J Acoust Soc Am; 2008 Jun; 123(6):4352-7. PubMed ID: 18537386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psychoacoustic and electrophysiological electric-acoustic interaction effects in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2020 Feb; 386():107873. PubMed ID: 31884220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners.
    Nelson DA; Schroder AC; Wojtczak M
    J Acoust Soc Am; 2001 Oct; 110(4):2045-64. PubMed ID: 11681384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-acoustic forward masking in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Krüger B; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2018 Jul; 364():25-37. PubMed ID: 29673567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of broadband elicitor duration on a psychoacoustic measure of cochlear gain reduction.
    Salloom WB; Bharadwaj H; Strickland EA
    J Acoust Soc Am; 2023 Apr; 153(4):2482. PubMed ID: 37092950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contralateral efferent regulation of human cochlear tuning: behavioural observations and computer model simulations.
    Lopez-Poveda EA; Aguilar E; Johannesen PT; Eustaquio-Martín A
    Adv Exp Med Biol; 2013; 787():47-54. PubMed ID: 23716208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between precursor level and the temporal effect.
    Strickland EA
    J Acoust Soc Am; 2008 Feb; 123(2):946-54. PubMed ID: 18247897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of broadband elicitor laterality on psychoacoustic gain reduction across signal frequency.
    Salloom WB; Strickland EA
    J Acoust Soc Am; 2021 Oct; 150(4):2817. PubMed ID: 34717476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precursor effects on behavioral estimates of frequency selectivity and gain in forward masking.
    Jennings SG; Strickland EA; Heinz MG
    J Acoust Soc Am; 2009 Apr; 125(4):2172-81. PubMed ID: 19354393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory filter shapes derived from forward and simultaneous masking at low frequencies: Implications for human cochlear tuning.
    Leschke J; Rodriguez Orellana G; Shera CA; Oxenham AJ
    Hear Res; 2022 Jul; 420():108500. PubMed ID: 35405591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evoked otoacoustic emission: behaviour under the forward masking paradigm.
    Kevanishvili Z; Gobsch H; Gvelesiani T; Gamgebeli Z
    ORL J Otorhinolaryngol Relat Spec; 1992; 54(5):229-34. PubMed ID: 1488243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency Tuning of the Efferent Effect on Cochlear Gain in Humans.
    Drga V; Plack CJ; Yasin I
    Adv Exp Med Biol; 2016; 894():477-484. PubMed ID: 27080689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Level dependence in behavioral measurements of auditory-filter phase characteristics.
    Shen Y; Lentz JJ
    J Acoust Soc Am; 2009 Nov; 126(5):2501-10. PubMed ID: 19894830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging Effects on Behavioural Estimates of Suppression with Short Suppressors.
    Hegland EL; Strickland EA
    Adv Exp Med Biol; 2016; 894():9-17. PubMed ID: 27080641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory filter nonlinearity across frequency using simultaneous notched-noise masking.
    Baker RJ; Rosen S
    J Acoust Soc Am; 2006 Jan; 119(1):454-62. PubMed ID: 16454300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of psychometric-function slopes for forward-masked tones to investigate cochlear nonlinearity.
    Schairer KS; Messersmith J; Jesteadt W
    J Acoust Soc Am; 2008 Oct; 124(4):2196-215. PubMed ID: 19062859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.