BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

638 related articles for article (PubMed ID: 29857814)

  • 1. How the Warburg effect supports aggressiveness and drug resistance of cancer cells?
    Icard P; Shulman S; Farhat D; Steyaert JM; Alifano M; Lincet H
    Drug Resist Updat; 2018 May; 38():1-11. PubMed ID: 29857814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reduced concentration of citrate in cancer cells: An indicator of cancer aggressiveness and a possible therapeutic target.
    Icard P; Lincet H
    Drug Resist Updat; 2016 Nov; 29():47-53. PubMed ID: 27912843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA Regulation of Energy Metabolism to Induce Chemoresistance in Cancers.
    Ye J; Zou M; Li P; Liu H
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818805997. PubMed ID: 30444190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.
    Taylor S; Spugnini EP; Assaraf YG; Azzarito T; Rauch C; Fais S
    Drug Resist Updat; 2015 Nov; 23():69-78. PubMed ID: 26341193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy.
    Wang G; Wang JJ; Yin PH; Xu K; Wang YZ; Shi F; Gao J; Fu XL
    J Cell Physiol; 2018 Jan; 234(1):348-368. PubMed ID: 30069931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect.
    Chen XS; Li LY; Guan YD; Yang JM; Cheng Y
    Acta Pharmacol Sin; 2016 Aug; 37(8):1013-9. PubMed ID: 27374491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Warburg effect and its cancer therapeutic implications.
    Chen Z; Lu W; Garcia-Prieto C; Huang P
    J Bioenerg Biomembr; 2007 Jun; 39(3):267-74. PubMed ID: 17551814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKM1 is involved in resistance to anti-cancer drugs.
    Taniguchi K; Sakai M; Sugito N; Kuranaga Y; Kumazaki M; Shinohara H; Ueda H; Futamura M; Yoshida K; Uchiyama K; Akao Y
    Biochem Biophys Res Commun; 2016 Apr; 473(1):174-180. PubMed ID: 27012213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoglycemia Enhances Epithelial-Mesenchymal Transition and Invasiveness, and Restrains the Warburg Phenotype, in Hypoxic HeLa Cell Cultures and Microspheroids.
    Marín-Hernández Á; Gallardo-Pérez JC; Hernández-Reséndiz I; Del Mazo-Monsalvo I; Robledo-Cadena DX; Moreno-Sánchez R; Rodríguez-Enríquez S
    J Cell Physiol; 2017 Jun; 232(6):1346-1359. PubMed ID: 27661776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer cell metabolism and developmental homeodomain/POU domain transcription factors: a connecting link.
    Purkayastha BP; Roy JK
    Cancer Lett; 2015 Jan; 356(2 Pt A):315-9. PubMed ID: 24909495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An update on therapeutic opportunities offered by cancer glycolytic metabolism.
    Granchi C; Fancelli D; Minutolo F
    Bioorg Med Chem Lett; 2014 Nov; 24(21):4915-25. PubMed ID: 25288186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer stem cell metabolism: a potential target for cancer therapy.
    Deshmukh A; Deshpande K; Arfuso F; Newsholme P; Dharmarajan A
    Mol Cancer; 2016 Nov; 15(1):69. PubMed ID: 27825361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long non-coding RNAs in cancer drug resistance development.
    Majidinia M; Yousefi B
    DNA Repair (Amst); 2016 Sep; 45():25-33. PubMed ID: 27427176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters.
    Marchiq I; Pouysségur J
    J Mol Med (Berl); 2016 Feb; 94(2):155-71. PubMed ID: 26099350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors.
    Zhang X; de Milito A; Olofsson MH; Gullbo J; D'Arcy P; Linder S
    Int J Mol Sci; 2015 Nov; 16(11):27313-26. PubMed ID: 26580606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advancements in therapeutic targeting of the Warburg effect in refractory ovarian cancer: A promise towards disease remission.
    Tyagi K; Mandal S; Roy A
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188563. PubMed ID: 33971276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolysis-induced drug resistance in tumors-A response to danger signals?
    Marcucci F; Rumio C
    Neoplasia; 2021 Feb; 23(2):234-245. PubMed ID: 33418276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication.
    Suh DH; Kim HS; Kim B; Song YS
    Biochem Pharmacol; 2014 Nov; 92(1):43-54. PubMed ID: 25168677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.