BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29857822)

  • 1. Development of optically sensitive liver cells.
    Vajanthri KY; Yadav P; Poddar S; Mahto SK
    Tissue Cell; 2018 Jun; 52():129-134. PubMed ID: 29857822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetics: Illuminating the Future of Hearing Restoration and Understanding Auditory Perception.
    Singh NK; Ramamourthy B; Hage N; Kappagantu KM
    Curr Gene Ther; 2024; 24(3):208-216. PubMed ID: 38676313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic control of cancer cell survival in ChR2-transfected HeLa cells.
    Córdova C; Lozano C; Rodríguez B; Marchant I; Zúñiga R; Ochova P; Olivero P; González-Arriagada WA
    Int J Exp Pathol; 2021 Dec; 102(6):242-248. PubMed ID: 34791724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
    Nussinovitch U; Shinnawi R; Gepstein L
    Cardiovasc Res; 2014 Apr; 102(1):176-87. PubMed ID: 24518144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Manipulation of Perfused Mouse Heart Expressing Channelrhodopsin-2 in Rhythm Control.
    Wang X; Cheng Y
    Methods Mol Biol; 2021; 2191():377-390. PubMed ID: 32865755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-Optical Miniaturized Co-culture Assay of Voltage-Gated Ca
    Agus V; Janovjak H
    Methods Mol Biol; 2020; 2173():247-260. PubMed ID: 32651923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintenance of optogenetic channel rhodopsin (ChR2) function in aging mice: Implications for pharmacological studies of inhibitory synaptic transmission, quantal content, and calcium homeostasis.
    DuBois DW; Murchison DA; Mahnke AH; Bang E; Winzer-Serhan U; Griffith WH; Souza KA
    Neuropharmacology; 2023 Nov; 238():109651. PubMed ID: 37414332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps.
    Reyer A; Häßler M; Scherzer S; Huang S; Pedersen JT; Al-Rascheid KAS; Bamberg E; Palmgren M; Dreyer I; Nagel G; Hedrich R; Becker D
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20920-20925. PubMed ID: 32788371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaky expression of channelrhodopsin-2 (ChR2) in Ai32 mouse lines.
    Prabhakar A; Vujovic D; Cui L; Olson W; Luo W
    PLoS One; 2019; 14(3):e0213326. PubMed ID: 30913225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology.
    Fernández MC; Kopton RA; Simon-Chica A; Madl J; Hilgendorf I; Zgierski-Johnston CM; Schneider-Warme F
    Methods Mol Biol; 2021; 2191():287-307. PubMed ID: 32865751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bicistronic Construct for Optogenetic Prosthesis of Ganglion Cell Receptive Field of Degenerative Retina.
    Petrovskaya LE; Roshchin MV; Smirnova GR; Kolotova DE; Balaban PM; Ostrovsky MA; Malyshev AY
    Dokl Biochem Biophys; 2019 May; 486(1):184-186. PubMed ID: 31367817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless Charging Electrochemiluminescence System for Ionic Channel Manipulation in Living Cells.
    Peng K; Liu S; Lv F; Fu X; Hussain S; Zhao H; Liu L; Wang S
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24655-24661. PubMed ID: 32391678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Optogenetics in Gene Therapy.
    Kushibiki T; Ishihara M
    Curr Gene Ther; 2018; 18(1):40-44. PubMed ID: 29512463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.
    Williams JC; Xu J; Lu Z; Klimas A; Chen X; Ambrosi CM; Cohen IS; Entcheva E
    PLoS Comput Biol; 2013; 9(9):e1003220. PubMed ID: 24068903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo neurovascular response to focused photoactivation of Channelrhodopsin-2.
    Mester JR; Bazzigaluppi P; Weisspapir I; Dorr A; Beckett TL; Koletar MM; Sled JG; Stefanovic B
    Neuroimage; 2019 May; 192():135-144. PubMed ID: 30669007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac optogenetics.
    Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1386-9. PubMed ID: 23366158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical capture and defibrillation in rats with monocrotaline-induced myocardial fibrosis 1 year after a single intravenous injection of adeno-associated virus channelrhodopsin-2.
    Li J; Wang L; Luo J; Li H; Rao P; Cheng Y; Wang X; Huang C
    Heart Rhythm; 2021 Jan; 18(1):109-117. PubMed ID: 32781160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic control of cell differentiation in channelrhodopsin-2-expressing OS3, a bipotential glial progenitor cell line.
    Ono K; Suzuki H; Yamamoto R; Sahashi H; Takido Y; Sawada M
    Neurochem Int; 2017 Mar; 104():49-63. PubMed ID: 28069421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping.
    Hamada S; Nagase M; Yoshizawa T; Hagiwara A; Isomura Y; Watabe AM; Ohtsuka T
    Commun Biol; 2021 Apr; 4(1):461. PubMed ID: 33846537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.