These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 2985785)
21. Kinetic analysis of the accumulation of gamma-aminobutyric acid by particulate fractions of rat brain: comparison of the effects of nipecotic acid and cis-3-aminocyclohexane-1-carboxylic acid. Yunger LM; Moonsammy GI; Rush JA Neurochem Res; 1983 Jun; 8(6):757-69. PubMed ID: 6621773 [TBL] [Abstract][Full Text] [Related]
22. Action of homocarnosine, carnosine and anserine on uptake and metabolism of GABA in different subcellular fractions of rat brain. Tardy M; Rolland B; Bardakdjian J; Gonnard P Experientia; 1978 Jul; 34(7):823-4. PubMed ID: 668844 [No Abstract] [Full Text] [Related]
23. Synaptosomal glutamate and GABA transport in patients with temporal lobe epilepsy. Hoogland G; Spierenburg HA; van Veelen CW; van Rijen PC; van Huffelen AC; de Graan PN J Neurosci Res; 2004 Jun; 76(6):881-90. PubMed ID: 15160399 [TBL] [Abstract][Full Text] [Related]
24. Epimeric cis-decahydroquinoline-5-carboxylic acids: effects on gamma-aminobutyric acid uptake and receptor binding in vitro. Witiak DT; Tomita K; Patch RJ; Enna SJ J Med Chem; 1981 Jul; 24(7):788-94. PubMed ID: 6268788 [TBL] [Abstract][Full Text] [Related]
26. Identification of gamma-aminobutyric acid and its binding sites in Caenorhabditis elegans. Schaeffer JM; Bergstrom AR Life Sci; 1988; 43(21):1701-6. PubMed ID: 2848169 [TBL] [Abstract][Full Text] [Related]
27. [Uptake of gamma-aminobutyric acid and glutamate decarboxylase activity in synaptosomes of various regions of the brain of rats in adrenalectomy and in subsequent hydrocortisone administration]. Mishunina TM; Kononenko VIa Ukr Biokhim Zh (1978); 1983; 55(6):647-51. PubMed ID: 6659082 [TBL] [Abstract][Full Text] [Related]
28. Neuroprotective effects of the novel glutamate transporter inhibitor (-)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake. Colleoni S; Jensen AA; Landucci E; Fumagalli E; Conti P; Pinto A; De Amici M; Pellegrini-Giampietro DE; De Micheli C; Mennini T; Gobbi M J Pharmacol Exp Ther; 2008 Aug; 326(2):646-56. PubMed ID: 18451317 [TBL] [Abstract][Full Text] [Related]
29. Structure-activity studies on the activity of a series of cyclopentane GABA analogues on GABAA receptors and GABA uptake. Allan RD; Dickenson HW; Fong J Eur J Pharmacol; 1986 Apr; 122(3):339-48. PubMed ID: 3011447 [TBL] [Abstract][Full Text] [Related]
30. Influence of supidimide on brain neurotransmitter systems of rats and mice. Hennies HH; Günzler WA; Flohé L Arzneimittelforschung; 1984; 34(11):1471-80. PubMed ID: 6084511 [TBL] [Abstract][Full Text] [Related]
31. Acute stress and GABAergic function in the rat brain. Otero Losada ME Br J Pharmacol; 1989 Mar; 96(3):507-12. PubMed ID: 2720289 [TBL] [Abstract][Full Text] [Related]
32. gamma-Aminobutyric acid system in isolated dorsal and ventral horn neurons from bovine spinal cord. Wakabayashi M; Higa H; Kushiya E; Araki K; Takahashi Y Neurochem Res; 1981 Jun; 6(6):659-71. PubMed ID: 7279116 [TBL] [Abstract][Full Text] [Related]
33. Structure-activity studies on benzhydrol-containing nipecotic acid and guvacine derivatives as potent, orally-active inhibitors of GABA uptake. Pavia MR; Lobbestael SJ; Nugiel D; Mayhugh DR; Gregor VE; Taylor CP; Schwarz RD; Brahce L; Vartanian MG J Med Chem; 1992 Oct; 35(22):4238-48. PubMed ID: 1433224 [TBL] [Abstract][Full Text] [Related]
34. Gestational changes of GABA levels and GABA binding in the human uterus. Erdö SL; Villányi P; László A Life Sci; 1989; 44(26):2009-14. PubMed ID: 2545985 [TBL] [Abstract][Full Text] [Related]
35. Dissociation of [3H]L-glutamate uptake from L-glutamate-induced [3H]D-aspartate release by 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-4-carboxylic acid and 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid, two conformationally constrained aspartate and glutamate analogs. Funicello M; Conti P; De Amici M; De Micheli C; Mennini T; Gobbi M Mol Pharmacol; 2004 Sep; 66(3):522-9. PubMed ID: 15322243 [TBL] [Abstract][Full Text] [Related]
36. Combined effects of a metabolic inhibitor (gabaculine) and an uptake inhibitor (ketamine) on the gamma-aminobutyrate system in mouse brain. Wood JD; Geddes JW; Tsui SK; Kurylo E J Neurochem; 1982 Dec; 39(6):1710-5. PubMed ID: 7142997 [TBL] [Abstract][Full Text] [Related]
37. [The effect of ethanol on gamma-aminobutyric acid in the brain]. Lassánová M; Turský T; Homerová D Bratisl Lek Listy; 1989 Dec; 90(12):875-84. PubMed ID: 2576392 [TBL] [Abstract][Full Text] [Related]
38. [Effect of thyrotropin releasing hormone (TRH) on GABA (gamma aminobutyric acid) metabolism in mouse and rat brains: as to the activities of GAD (glutamic acid decarboxylase), GABA-T (GABA-transaminase) and GABA re-uptake]. Kurahashi K; Kaneko S; Matsunaga M; Sato T; Takebe K No To Shinkei; 1985 Dec; 37(12):1211-6. PubMed ID: 3937548 [TBL] [Abstract][Full Text] [Related]
39. Anticonvulsant enaminones depress excitatory synaptic transmission in the rat brain by enhancing extracellular GABA levels. Kombian SB; Edafiogho IO; Ananthalakshmi KV Br J Pharmacol; 2005 Aug; 145(7):945-53. PubMed ID: 15912138 [TBL] [Abstract][Full Text] [Related]
40. Presynaptic mechanisms underlying the gamma-aminobutyric acid-evoked receptor-independent release of [3H]norepinephrine in rat hippocampus. Bonanno G; Fontana G; Fedele E; Robino G; Raiteri M J Neurochem; 1989 Jun; 52(6):1854-8. PubMed ID: 2542451 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]