These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 29858245)
41. The human cancer cell active toxin Cry41Aa from Krishnan V; Domanska B; Elhigazi A; Afolabi F; West MJ; Crickmore N Biochem J; 2017 Apr; 474(10):1591-1602. PubMed ID: 28341807 [TBL] [Abstract][Full Text] [Related]
42. Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity. Likitvivatanavong S; Aimanova KG; Gill SS FEBS Lett; 2009 Jun; 583(12):2021-30. PubMed ID: 19450583 [TBL] [Abstract][Full Text] [Related]
43. Purification and characterization of Bacillus thuringiensis vegetative insecticidal toxin protein(s). Osman G; Assaeedi A; Osman Y; El-Ghareeb D; Alreedy R Lett Appl Microbiol; 2013 Oct; 57(4):310-6. PubMed ID: 23815791 [TBL] [Abstract][Full Text] [Related]
44. Fate of Bacillus thuringiensis strains in different insect larvae. Suzuki MT; Lereclus D; Arantes OM Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915 [TBL] [Abstract][Full Text] [Related]
45. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. Qiu L; Wang P; Wu T; Li B; Wang X; Lei C; Lin Y; Zhao J; Ma W Insect Mol Biol; 2018 Feb; 27(1):83-89. PubMed ID: 28940938 [TBL] [Abstract][Full Text] [Related]
46. An Intramolecular Salt Bridge in Bacillus thuringiensis Cry4Ba Toxin Is Involved in the Stability of Helix α-3, Which Is Needed for Oligomerization and Insecticidal Activity. Pacheco S; Gómez I; Sánchez J; García-Gómez BI; Soberón M; Bravo A Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802270 [No Abstract] [Full Text] [Related]
47. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Gómez I; Pardo-López L; Muñoz-Garay C; Fernandez LE; Pérez C; Sánchez J; Soberón M; Bravo A Peptides; 2007 Jan; 28(1):169-73. PubMed ID: 17145116 [TBL] [Abstract][Full Text] [Related]
48. ATP-Binding Cassette Subfamily A Member 2 is a Functional Receptor for Li X; Miyamoto K; Takasu Y; Wada S; Iizuka T; Adegawa S; Sato R; Watanabe K Toxins (Basel); 2020 Feb; 12(2):. PubMed ID: 32041133 [No Abstract] [Full Text] [Related]
49. Cry1Ac Protoxin and Its Activated Toxin from Qi L; Qiu X; Yang S; Li R; Wu B; Cao X; He T; Ding X; Xia L; Sun Y J Agric Food Chem; 2020 May; 68(21):5816-5824. PubMed ID: 32379448 [TBL] [Abstract][Full Text] [Related]
50. Analysis of Synergism between Extracellular Polysaccharide from Xue B; Wang M; Wang Z; Shu C; Geng L; Zhang J Toxins (Basel); 2023 Sep; 15(10):. PubMed ID: 37888621 [No Abstract] [Full Text] [Related]
51. A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against Lepidopteran insects. Shan S; Zhang Y; Ding X; Hu S; Sun Y; Yu Z; Liu S; Zhu Z; Xia L Curr Microbiol; 2011 Feb; 62(2):358-65. PubMed ID: 20669019 [TBL] [Abstract][Full Text] [Related]
52. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Rajamohan F; Lee MK; Dean DH Prog Nucleic Acid Res Mol Biol; 1998; 60():1-27. PubMed ID: 9594569 [TBL] [Abstract][Full Text] [Related]
53. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Bravo A; Gill SS; Soberón M Toxicon; 2007 Mar; 49(4):423-35. PubMed ID: 17198720 [TBL] [Abstract][Full Text] [Related]
54. Pore formation by Cry toxins. Soberón M; Pardo L; Muñóz-Garay C; Sánchez J; Gómez I; Porta H; Bravo A Adv Exp Med Biol; 2010; 677():127-42. PubMed ID: 20687486 [TBL] [Abstract][Full Text] [Related]
55. A Shared Receptor Suggests a Common Ancestry between an Insecticidal Bryce-Sharron N; Nasiri M; Powell T; West MJ; Crickmore N Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062509 [TBL] [Abstract][Full Text] [Related]
56. The role of Bacillus thuringiensis Cry1C and Cry1E separate structural domains in the interaction with Spodoptera littoralis gut epithelial cells. Avisar D; Keller M; Gazit E; Prudovsky E; Sneh B; Zilberstein A J Biol Chem; 2004 Apr; 279(16):15779-86. PubMed ID: 14963036 [TBL] [Abstract][Full Text] [Related]
57. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Garczynski SF; Crim JW; Adang MJ Appl Environ Microbiol; 1991 Oct; 57(10):2816-20. PubMed ID: 1746942 [TBL] [Abstract][Full Text] [Related]
58. Oligomerization is a key step for Bacillus thuringiensis Cyt1Aa insecticidal activity but not for toxicity against red blood cells. Anaya P; Onofre J; Torres-Quintero MC; Sánchez J; Gill SS; Bravo A; Soberón M Insect Biochem Mol Biol; 2020 Apr; 119():103317. PubMed ID: 31978588 [TBL] [Abstract][Full Text] [Related]
59. Insecticidal activity of Bacillus thuringiensis towards Agrotis exclamationis larvae-A widespread and underestimated pest of the Palearctic zone. Baranek J; Jakubowska M; Gabała E PLoS One; 2023; 18(3):e0283077. PubMed ID: 36928078 [TBL] [Abstract][Full Text] [Related]
60. Coexistence of Wang Z; Wang K; Bravo A; Soberón M; Cai J; Shu C; Zhang J J Agric Food Chem; 2020 Nov; 68(47):14081-14090. PubMed ID: 33180493 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]