BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 29858614)

  • 1. Feasibility of dynamic stress
    Han S; Kim YH; Ahn JM; Kang SJ; Oh JS; Shin E; Sung C; Chae SY; Park SJ; Grimberg G; Kovalski G; Moon DH
    Eur J Nucl Med Mol Imaging; 2018 Nov; 45(12):2173-2180. PubMed ID: 29858614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPECT Myocardial Perfusion Reserve in Patients with Multivessel Coronary Disease: Correlation with Angiographic Findings and Invasive Fractional Flow Reserve Measurements.
    Ben Bouallègue F; Roubille F; Lattuca B; Cung TT; Macia JC; Gervasoni R; Leclercq F; Mariano-Goulart D
    J Nucl Med; 2015 Nov; 56(11):1712-7. PubMed ID: 26338893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical usefulness of quantification of myocardial blood flow and flow reserve using CZT-SPECT for detecting coronary artery disease in patients with normal stress perfusion imaging.
    Shiraishi S; Tsuda N; Sakamoto F; Ogasawara K; Tomiguchi S; Tsujita K; Yamashita Y
    J Cardiol; 2020 Apr; 75(4):400-409. PubMed ID: 31753710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study.
    Ben-Haim S; Murthy VL; Breault C; Allie R; Sitek A; Roth N; Fantony J; Moore SC; Park MA; Kijewski M; Haroon A; Slomka P; Erlandsson K; Baavour R; Zilberstien Y; Bomanji J; Di Carli MF
    J Nucl Med; 2013 Jun; 54(6):873-9. PubMed ID: 23578996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between N
    Giubbini R; Bertoli M; Durmo R; Bonacina M; Peli A; Faggiano I; Albano D; Milan E; Stern E; Paghera B; Rodella C; Cerudelli E; Gazzilli M; Dondi F; Bertagna F; Camoni L
    J Nucl Cardiol; 2021 Oct; 28(5):1906-1918. PubMed ID: 31728817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score.
    Miyagawa M; Nishiyama Y; Uetani T; Ogimoto A; Ikeda S; Ishimura H; Watanabe E; Tashiro R; Tanabe Y; Kido T; Kurata A; Mochizuki T
    Int J Cardiol; 2017 Oct; 244():347-353. PubMed ID: 28622946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First validation of myocardial flow reserve assessed by dynamic
    Agostini D; Roule V; Nganoa C; Roth N; Baavour R; Parienti JJ; Beygui F; Manrique A
    Eur J Nucl Med Mol Imaging; 2018 Jul; 45(7):1079-1090. PubMed ID: 29497801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of absolute Tc-99m tetrofosmin retention in the myocardium as an index of myocardial blood flow and coronary flow reserve by gated-SPECT/CT: a feasibility study.
    Apostolopoulos DJ; Kaspiri A; Spyridonidis T; Patsouras N; Savvopoulos CA; Davlouros P; Vassilakos PJ; Alexopoulos D
    Ann Nucl Med; 2015 Aug; 29(7):588-602. PubMed ID: 25971450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of technetium-99m tetrofosmin and thallium-201 single-photon emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease.
    Shanoudy H; Raggi P; Beller GA; Soliman A; Ammermann EG; Kastner RJ; Watson DD
    J Am Coll Cardiol; 1998 Feb; 31(2):331-7. PubMed ID: 9462576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Associations of cardiovascular and diabetes-related risk factors with myocardial perfusion reserve assessed by
    Choi JH; Han S; Shin E; Oh M; Moon JE; Chae SY; Lee CW; Moon DH
    Int J Cardiovasc Imaging; 2023 Aug; 39(8):1605-1613. PubMed ID: 37261681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve.
    Mouden M; Ottervanger JP; Knollema S; Timmer JR; Reiffers S; Oostdijk AH; de Boer MJ; Jager PL
    Eur J Nucl Med Mol Imaging; 2014 May; 41(5):956-62. PubMed ID: 24310438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera.
    Shiraishi S; Sakamoto F; Tsuda N; Yoshida M; Tomiguchi S; Utsunomiya D; Ogawa H; Yamashita Y
    Circ J; 2015; 79(3):623-31. PubMed ID: 25746547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 99mTc tetrofosmin myocardial perfusion scintigraphy in CAD. Performance with early and standard delayed acquisition and fractional flow reserve.
    Pirich C; Keinrath P; Rettenbacher L; Rendl G; Holzmannhofer J; Hammerer M; Schuler J; Beheshti M
    Nuklearmedizin; 2014; 53(3):111-6. PubMed ID: 24963973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy.
    Zavadovsky KV; Mochula AV; Boshchenko AA; Vrublevsky AV; Baev AE; Krylov AL; Gulya MO; Nesterov EA; Liga R; Gimelli A
    J Nucl Cardiol; 2021 Feb; 28(1):249-259. PubMed ID: 30847856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical Feasibility of Simultaneous Acquisition Rest (99m)Tc/Stress (201)Tl Dual-Isotope Myocardial Perfusion Single-Photon Emission Computed Tomography With Semiconductor Camera.
    Makita A; Matsumoto N; Suzuki Y; Hori Y; Kuronuma K; Yoda S; Kasama S; Iguchi N; Suzuki Y; Hirayama A
    Circ J; 2016; 80(3):689-95. PubMed ID: 26781361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium-Zinc-Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET.
    Nkoulou R; Fuchs TA; Pazhenkottil AP; Kuest SM; Ghadri JR; Stehli J; Fiechter M; Herzog BA; Gaemperli O; Buechel RR; Kaufmann PA
    J Nucl Med; 2016 Dec; 57(12):1887-1892. PubMed ID: 27363834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Flow-Limiting Fractional Flow Reserve in Patients With Stable Coronary Artery Disease Based on Quantitative Myocardial Perfusion Imaging.
    Tanaka H; Takahashi T; Kozono N; Tanakamaru Y; Ohashi N; Yasunobu Y; Tanaka K; Okada T; Kaseda S; Nakanishi T; Kihara Y
    Am J Cardiol; 2016 May; 117(9):1417-26. PubMed ID: 26970815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic Performance of a Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography System With Low-Dose Technetium-99m as Assessed by Fractional Flow Reserve.
    Chikamori T; Hida S; Tanaka N; Igarashi Y; Yamashita J; Shiba C; Murata N; Hoshino K; Hokama Y; Yamashina A
    Circ J; 2016 Apr; 80(5):1217-24. PubMed ID: 27053432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardial Flow Assessment After Heart Transplantation Using Dynamic Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography With
    Ko KY; Ko CL; Lee CM; Cheng JS; Wu YW; Hsu RB; Chen YS; Wang SS; Yen RF; Cheng MF
    Circ Cardiovasc Imaging; 2023 Jun; 16(6):e015034. PubMed ID: 37313753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative rest technetium-99m tetrofosmin imaging in predicting functional recovery after revascularization: comparison with rest-redistribution thallium-201.
    Matsunari I; Fujino S; Taki J; Senma J; Aoyama T; Wakasugi T; Hirai J; Saga T; Yamamoto S; Tonami N
    J Am Coll Cardiol; 1997 May; 29(6):1226-33. PubMed ID: 9137217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.