BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29858644)

  • 1. Inherently Radiopaque Narrow-Size-Calibrated Microspheres: Proof of Principle in a Pig Embolization Model.
    Sommer CM; Harms A; Do TD; Gockner TL; Kriegsmann M; Schlett CL; Holzer K; Vollherbst D; Warth A; Pereira PL; Eichwald V; Jugold M; Kauczor HU; Flechsig P
    Cardiovasc Intervent Radiol; 2018 Sep; 41(9):1404-1411. PubMed ID: 29858644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computed tomography and histopathological findings after embolization with inherently radiopaque 40μm-microspheres, standard 40μm-microspheres and iodized oil in a porcine liver model.
    Vollherbst DF; Gockner T; Do T; Holzer K; Mogler C; Flechsig P; Harms A; Schlett CL; Pereira PL; Richter GM; Kauczor HU; Sommer CM
    PLoS One; 2018; 13(7):e0198911. PubMed ID: 29985928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodality Imaging of Ethiodized Oil-loaded Radiopaque Microspheres during Transarterial Embolization of Rabbits with VX2 Liver Tumors.
    Tacher V; Duran R; Lin M; Sohn JH; Sharma KV; Wang Z; Chapiro J; Gacchina Johnson C; Bhagat N; Dreher MR; Schäfer D; Woods DL; Lewis AL; Tang Y; Grass M; Wood BJ; Geschwind JF
    Radiology; 2016 Jun; 279(3):741-53. PubMed ID: 26678453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of "imageable" beads for transcatheter embolotherapy.
    Sharma KV; Dreher MR; Tang Y; Pritchard W; Chiesa OA; Karanian J; Peregoy J; Orandi B; Woods D; Donahue D; Esparza J; Jones G; Willis SL; Lewis AL; Wood BJ
    J Vasc Interv Radiol; 2010 Jun; 21(6):865-76. PubMed ID: 20494290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Characterization of a Novel Type of Radiopaque Doxorubicin-Loaded Microsphere.
    Pan F; Schneider D; Ryschich E; Qian B; Vollherbst DF; Möhlenbruch MA; Jugold M; Eichwald V; Stenzel P; Pereira PL; Richter GM; Kauczor HU; Sommer CM; Do TD
    Cardiovasc Intervent Radiol; 2020 Apr; 43(4):636-647. PubMed ID: 31965224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and Detection of Radiopaque Beads after Hepatic Transarterial Embolization in Swine: Cone-Beam CT versus MicroCT.
    Thompson JG; van der Sterren W; Bakhutashvili I; van der Bom IM; Radaelli AG; Karanian JW; Esparza-Trujillo J; Woods DL; Lewis AL; Wood BJ; Pritchard WF
    J Vasc Interv Radiol; 2018 Apr; 29(4):568-574. PubMed ID: 29500000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Inherently Radiopaque Bead for Transarterial Embolization to Treat Liver Cancer - A Pre-clinical Study.
    Duran R; Sharma K; Dreher MR; Ashrafi K; Mirpour S; Lin M; Schernthaner RE; Schlachter TR; Tacher V; Lewis AL; Willis S; den Hartog M; Radaelli A; Negussie AH; Wood BJ; Geschwind JF
    Theranostics; 2016; 6(1):28-39. PubMed ID: 26722371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal visibility (radiography, computed tomography, and magnetic resonance imaging) of microspheres for transarterial embolization tested in porcine kidneys.
    Sommer CM; Stampfl U; Bellemann N; Holzschuh M; Kueller A; Bluemmel J; Gehrig T; Shevchenko M; Kenngott HG; Kauczor HU; Pereira PL; Radeleff BA
    Invest Radiol; 2013 Apr; 48(4):213-22. PubMed ID: 23399807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification and reduction of reflux during embolotherapy using an antireflux catheter and tantalum microspheres: ex vivo analysis.
    Arepally A; Chomas J; Kraitchman D; Hong K
    J Vasc Interv Radiol; 2013 Apr; 24(4):575-80. PubMed ID: 23462064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bariatric Arterial Embolization with Calibrated Radiopaque Microspheres and an Antireflux Catheter Suppresses Weight Gain and Appetite-Stimulating Hormones in Swine.
    Weiss CR; Fu Y; Beh C; Hu C; Kedziorek D; Shin EJ; Anders RA; Arepally A; Kraitchman DL
    J Vasc Interv Radiol; 2020 Sep; 31(9):1483-1491. PubMed ID: 32800664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of microsphere penetration with LC Bead LUMI™ versus other commercial microspheres.
    Caine M; Zhang X; Hill M; Guo W; Ashrafi K; Bascal Z; Kilpatrick H; Dunn A; Grey D; Bushby R; Bushby A; Willis SL; Dreher MR; Lewis AL
    J Mech Behav Biomed Mater; 2018 Feb; 78():46-55. PubMed ID: 29132100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and evaluation of biocompatible long-term radiopaque microspheres based on polyvinyl alcohol and lipiodol for embolization.
    Meng WJ; Lu XJ; Wang H; Fan TY; Cui DC; Zhang SS; Zheng ZZ; Guan HT; Song L; Zou YH
    J Biomater Appl; 2015 Aug; 30(2):133-46. PubMed ID: 25766037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting and recanalization after embolization with calibrated resorbable microspheres versus hand-cut gelatin sponge particles in a porcine kidney model.
    Maeda N; Verret V; Moine L; Bédouet L; Louguet S; Servais E; Osuga K; Tomiyama N; Wassef M; Laurent A
    J Vasc Interv Radiol; 2013 Sep; 24(9):1391-8. PubMed ID: 23891049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal visibility of a modified polyzene-F-coated spherical embolic agent for liver embolization: feasibility study in a porcine model.
    Stampfl U; Sommer CM; Bellemann N; Holzschuh M; Kueller A; Bluemmel J; Gehrig T; Shevchenko M; Kenngott H; Kauczor HU; Radeleff B
    J Vasc Interv Radiol; 2012 Sep; 23(9):1225-31.e2. PubMed ID: 22832143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-prepared, monodisperse, X-ray-visible, embolic microspheres for non-oncological embolization applications.
    Beh CW; Fu Y; Weiss CR; Hu C; Arepally A; Mao HQ; Wang TH; Kraitchman DL
    Lab Chip; 2020 Oct; 20(19):3591-3600. PubMed ID: 32869821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation and evaluation of radiopaque microspheres].
    Zhang Y; Yuan HY; Wu JW; Fan TY
    Beijing Da Xue Xue Bao Yi Xue Ban; 2009 Aug; 41(4):447-51. PubMed ID: 19727236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holmium-lipiodol-alginate microspheres for fluoroscopy-guided embolotherapy and multimodality imaging.
    Oerlemans C; Seevinck PR; Smits ML; Hennink WE; Bakker CJ; van den Bosch MA; Nijsen JF
    Int J Pharm; 2015 Mar; 482(1-2):47-53. PubMed ID: 25448561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balancing Safety and Efficacy to Determine the Most Suitable Size of Imaging-Visible Embolic Microspheres for Bariatric Arterial Embolization in a Preclinical Model.
    Fu Y; Abiola G; Tunacao J; Vairavamurthy JP; Nwoke F; Dreher M; Shin EJ; Anders RA; Kraitchman DL; Weiss CR
    J Vasc Interv Radiol; 2023 Dec; 34(12):2224-2232.e3. PubMed ID: 37684003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic fabrication of imageable and resorbable polyethylene glycol microspheres for catheter embolization.
    Vogt K; Aryan L; Stealey S; Hall A; Pereira K; Zustiak SP
    J Biomed Mater Res A; 2022 Jan; 110(1):131-142. PubMed ID: 34289220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handling and performance characteristics of a new small caliber radiopaque embolic microsphere.
    Lewis AL; Caine M; Garcia P; Ashrafi K; Tang Y; Hinchcliffe L; Guo W; Bascal Z; Kilpatrick H; Willis SL
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2878-2888. PubMed ID: 32578348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.