BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29858738)

  • 1. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity.
    Zhang R; Kramer JS; Smith JD; Allen BN; Leeper CN; Li X; Morton LD; Gallazzi F; Ulery BD
    AAPS J; 2018 Jun; 20(4):73. PubMed ID: 29858738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide Amphiphile Micelles for Vaccine Delivery.
    Barrett JC; Tirrell MV
    Methods Mol Biol; 2018; 1798():277-292. PubMed ID: 29868967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Design of Antigen Incorporation Into Subunit Vaccine Biomaterials Can Enhance Antigen-Specific Immune Responses.
    Tsoras AN; Wong KM; Paravastu AK; Champion JA
    Front Immunol; 2020; 11():1547. PubMed ID: 32849524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modern subunit vaccines: development, components, and research opportunities.
    Moyle PM; Toth I
    ChemMedChem; 2013 Mar; 8(3):360-76. PubMed ID: 23316023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide Amphiphile Micelle Vaccine Size and Charge Influence the Host Antibody Response.
    Zhang R; Smith JD; Allen BN; Kramer JS; Schauflinger M; Ulery BD
    ACS Biomater Sci Eng; 2018 Jul; 4(7):2463-2472. PubMed ID: 33435110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination.
    Trent A; Ulery BD; Black MJ; Barrett JC; Liang S; Kostenko Y; David NA; Tirrell MV
    AAPS J; 2015 Mar; 17(2):380-8. PubMed ID: 25527256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of adaptive immune response by self-aggregating peptides.
    Zepeda-Cervantes J; Vaca L
    Expert Rev Vaccines; 2018 Aug; 17(8):723-738. PubMed ID: 30074424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subunit vaccines of the future: the need for safe, customized and optimized particulate delivery systems.
    Foged C
    Ther Deliv; 2011 Aug; 2(8):1057-77. PubMed ID: 22826868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing cellular immunogenicity to peptide-based vaccine candidates using a fluorocarbon antigen delivery system.
    Francis JN; Thaburet JF; Bonnet D; Sizer PJ; Brown CB; Georges B
    Vaccine; 2015 Feb; 33(8):1071-6. PubMed ID: 25573036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidized Carbon Nanosphere-Based Subunit Vaccine Delivery System Elicited Robust Th1 and Cytotoxic T Cell Responses.
    Sawutdeechaikul P; Cia F; Bancroft G; Wanichwecharungruang S; Sittplangkoon C; Palaga T
    J Microbiol Biotechnol; 2019 Mar; 29(3):489-499. PubMed ID: 30691253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intranasal administration is an effective mucosal vaccine delivery route for self-adjuvanting lipid core peptides targeting the group A streptococcal M protein.
    Olive C; Sun HK; Ho MF; Dyer J; Horváth A; Toth I; Good MF
    J Infect Dis; 2006 Aug; 194(3):316-24. PubMed ID: 16826479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IC31 and IC30, novel types of vaccine adjuvant based on peptide delivery systems.
    Lingnau K; Riedl K; von Gabain A
    Expert Rev Vaccines; 2007 Oct; 6(5):741-6. PubMed ID: 17931154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Interleukin 12 Adjuvanted Herpes Simplex Virus 2 DNA Vaccine Is More Protective Than a Glycoprotein D Subunit Vaccine in a High-Dose Murine Challenge Model.
    Bagley KC; Schwartz JA; Andersen H; Eldridge JH; Xu R; Ota-Setlik A; Geltz JJ; Halford WP; Fouts TR
    Viral Immunol; 2017 Apr; 30(3):178-195. PubMed ID: 28085634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens.
    Perrie Y; Mohammed AR; Kirby DJ; McNeil SE; Bramwell VW
    Int J Pharm; 2008 Dec; 364(2):272-80. PubMed ID: 18555624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens.
    Swaminathan G; Thoryk EA; Cox KS; Meschino S; Dubey SA; Vora KA; Celano R; Gindy M; Casimiro DR; Bett AJ
    Vaccine; 2016 Jan; 34(1):110-9. PubMed ID: 26555351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit-based mucosal vaccine delivery systems for pulmonary delivery - Are they feasible?
    Marasini N; Kaminskas LM
    Drug Dev Ind Pharm; 2019 Jun; 45(6):882-894. PubMed ID: 30767591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in adjuvant discovery for peptide-based subunit vaccines.
    Azmi F; Ahmad Fuaad AA; Skwarczynski M; Toth I
    Hum Vaccin Immunother; 2014; 10(3):778-96. PubMed ID: 24300669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.
    Silva AL; Soema PC; Slütter B; Ossendorp F; Jiskoot W
    Hum Vaccin Immunother; 2016 Apr; 12(4):1056-69. PubMed ID: 26752261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing subunit immunogens using B and T cell epitopes and their constructs derived from the F1 antigen of Yersinia pestis using novel delivery vehicles.
    Sabhnani L; Manocha M; Sridevi K; Shashikiran D; Rayanade R; Rao DN
    FEMS Immunol Med Microbiol; 2003 Oct; 38(3):215-29. PubMed ID: 14522457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines.
    Moyle PM
    Biotechnol Adv; 2017; 35(3):375-389. PubMed ID: 28288861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.