BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

776 related articles for article (PubMed ID: 29858754)

  • 1. Evaluation and Optimization of Organic Acid Pretreatment of Cotton Gin Waste for Enzymatic Hydrolysis and Bioethanol Production.
    Sahu S; Pramanik K
    Appl Biochem Biotechnol; 2018 Dec; 186(4):1047-1060. PubMed ID: 29858754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2013 Oct; 171(3):771-85. PubMed ID: 23892623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea.
    Sunwoo IY; Nguyen TH; Sukwong P; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2018 Mar; 28(3):401-408. PubMed ID: 29212293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes.
    McIntosh S; Vancov T; Palmer J; Morris S
    Bioresour Technol; 2014 Dec; 173():42-51. PubMed ID: 25280112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of ethanol production from corncob using Scheffersomyces (Pichia) stipitis CBS 6054 by volumetric scale-up.
    Lee JW; Zhu JY; Scordia D; Jeffries TW
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):814-22. PubMed ID: 21671055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dilute acid pretreatment on the saccharification and fermentation of rye straw.
    Robak K; Balcerek M; Dziekońska-Kubczak U; Dziugan P
    Biotechnol Prog; 2019 May; 35(3):e2789. PubMed ID: 30773839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of cellulosic ethanol from cotton processing residues after pretreatment with dilute sodium hydroxide and enzymatic hydrolysis.
    Fockink DH; Maceno MAC; Ramos LP
    Bioresour Technol; 2015; 187():91-96. PubMed ID: 25841187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.
    Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N
    Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation.
    Lee JW; Rodrigues RC; Kim HJ; Choi IG; Jeffries TW
    Bioresour Technol; 2010 Jun; 101(12):4379-85. PubMed ID: 20188541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.
    Hafid HS; Nor 'Aini AR; Mokhtar MN; Talib AT; Baharuddin AS; Umi Kalsom MS
    Waste Manag; 2017 Sep; 67():95-105. PubMed ID: 28527863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Bioethanol Productivity Using Alkali-Pretreated Empty Palm Fruit Bunch Fiber Hydrolysate.
    Kim S
    Biomed Res Int; 2018; 2018():5272935. PubMed ID: 30255095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. for ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077.
    Bhatia L; Johri S
    Indian J Exp Biol; 2015 Dec; 53(12):819-27. PubMed ID: 26742327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production.
    Sindhu R; Kuttiraja M; Binod P; Janu KU; Sukumaran RK; Pandey A
    Bioresour Technol; 2011 Dec; 102(23):10915-21. PubMed ID: 22000965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of bioethanol from corn stover by pretreatment with a combination of sulfuric acid and sodium hydroxide.
    Tan L; Tang YQ; Nishimura H; Takei S; Morimura S; Kida K
    Prep Biochem Biotechnol; 2013; 43(7):682-95. PubMed ID: 23768113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot-scale bioethanol production from the starch of avocado seeds using a combination of dilute acid-based hydrolysis and alcoholic fermentation by Saccharomyces cerevisiae.
    Caballero-Sanchez L; Lázaro-Mixteco PE; Vargas-Tah A; Castro-Montoya AJ
    Microb Cell Fact; 2023 Jun; 22(1):119. PubMed ID: 37386435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production.
    Rattanaporn K; Tantayotai P; Phusantisampan T; Pornwongthong P; Sriariyanun M
    Bioprocess Biosyst Eng; 2018 Apr; 41(4):467-477. PubMed ID: 29247262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of brewer's spent grains to bioethanol.
    White JS; Yohannan BK; Walker GM
    FEMS Yeast Res; 2008 Nov; 8(7):1175-84. PubMed ID: 18547331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretreatment of extruded Napier grass byhydrothermal process with dilute sulfuric acid and fermentation using a cellulose-hydrolyzing and xylose-assimilating yeast for ethanol production.
    Ismail KSK; Matano Y; Sakihama Y; Inokuma K; Nambu Y; Hasunuma T; Kondo A
    Bioresour Technol; 2022 Jan; 343():126071. PubMed ID: 34606923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.
    Keshav PK; Naseeruddin S; Rao LV
    Bioresour Technol; 2016 Aug; 214():363-370. PubMed ID: 27155264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.