These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29859042)
21. Electrochemical sensing of ethylene employing a thin ionic-liquid layer. Zevenbergen MA; Wouters D; Dam VA; Brongersma SH; Crego-Calama M Anal Chem; 2011 Aug; 83(16):6300-7. PubMed ID: 21721532 [TBL] [Abstract][Full Text] [Related]
22. Molecular basis for jasmonate and ethylene signal interactions in Arabidopsis. Zhu Z J Exp Bot; 2014 Nov; 65(20):5743-8. PubMed ID: 25165148 [TBL] [Abstract][Full Text] [Related]
23. Device for respiration activity measurement enables the determination of oxygen transfer rates of microbial cultures in shaken 96-deepwell microtiter plates. Dinger R; Lattermann C; Flitsch D; Fischer JP; Kosfeld U; Büchs J Biotechnol Bioeng; 2022 Mar; 119(3):881-894. PubMed ID: 34951007 [TBL] [Abstract][Full Text] [Related]
24. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Kahl J; Siemens DH; Aerts RJ; Gäbler R; Kühnemann F; Preston CA; Baldwin IT Planta; 2000 Jan; 210(2):336-42. PubMed ID: 10664141 [TBL] [Abstract][Full Text] [Related]
25. Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not. Riedel T; Groten K; Baldwin IT Plant Cell Environ; 2008 Sep; 31(9):1203-13. PubMed ID: 18507809 [TBL] [Abstract][Full Text] [Related]
26. Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth. Kensy F; Zimmermann HF; Knabben I; Anderlei T; Trauthwein H; Dingerdissen U; Büchs J Biotechnol Bioeng; 2005 Mar; 89(6):698-708. PubMed ID: 15696519 [TBL] [Abstract][Full Text] [Related]
27. Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors. Wewetzer SJ; Kunze M; Ladner T; Luchterhand B; Roth S; Rahmen N; Kloß R; Costa E Silva A; Regestein L; Büchs J J Biol Eng; 2015; 9():9. PubMed ID: 26265936 [TBL] [Abstract][Full Text] [Related]
28. Combination of On-line pH and Oxygen Transfer Rate Measurement in Shake Flasks by Fiber Optical Technique and Respiration Activity MOnitoring System (RAMOS). Scheidle M; Klinger J; Büchs J Sensors (Basel); 2007 Dec; 7(12):3472-3480. PubMed ID: 28903306 [TBL] [Abstract][Full Text] [Related]
29. Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. Zhao J; Zheng SH; Fujita K; Sakai K J Exp Bot; 2004 May; 55(399):1003-12. PubMed ID: 15047767 [TBL] [Abstract][Full Text] [Related]
30. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. Ankala A; Luthe DS; Williams WP; Wilkinson JR Mol Plant Microbe Interact; 2009 Dec; 22(12):1555-64. PubMed ID: 19888821 [TBL] [Abstract][Full Text] [Related]
31. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Kazan K Trends Plant Sci; 2015 Apr; 20(4):219-29. PubMed ID: 25731753 [TBL] [Abstract][Full Text] [Related]
32. 2,3,5,4'- tetrahydroxystilbene-2-O-β-D-glycoside biosynthesis by suspension cells cultures of Polygonum multiflorum Thunb and production enhancement by methyl jasmonate and salicylic acid. Shao L; Zhao SJ; Cui TB; Liu ZY; Zhao W Molecules; 2012 Feb; 17(2):2240-7. PubMed ID: 22357320 [TBL] [Abstract][Full Text] [Related]
33. HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses. Manavella PA; Dezar CA; Bonaventure G; Baldwin IT; Chan RL Plant J; 2008 Nov; 56(3):376-88. PubMed ID: 18643970 [TBL] [Abstract][Full Text] [Related]
34. Current methods for detecting ethylene in plants. Cristescu SM; Mandon J; Arslanov D; De Pessemier J; Hermans C; Harren FJ Ann Bot; 2013 Mar; 111(3):347-60. PubMed ID: 23243188 [TBL] [Abstract][Full Text] [Related]
35. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Doornbos RF; Geraats BP; Kuramae EE; Van Loon LC; Bakker PA Mol Plant Microbe Interact; 2011 Apr; 24(4):395-407. PubMed ID: 21171889 [TBL] [Abstract][Full Text] [Related]
36. Insights into the origin and evolution of the plant hormone signaling machinery. Wang C; Liu Y; Li SS; Han GZ Plant Physiol; 2015 Mar; 167(3):872-86. PubMed ID: 25560880 [TBL] [Abstract][Full Text] [Related]
37. Hormone Profiling in Plant Tissues. Müller M; Munné-Bosch S Methods Mol Biol; 2017; 1497():249-258. PubMed ID: 27864771 [TBL] [Abstract][Full Text] [Related]
38. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. Zhu C; Gan L; Shen Z; Xia K J Exp Bot; 2006; 57(6):1299-308. PubMed ID: 16531464 [TBL] [Abstract][Full Text] [Related]
39. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea. Zhou JY; Li X; Zhao D; Deng-Wang MY; Dai CC Planta; 2016 Sep; 244(3):699-712. PubMed ID: 27125387 [TBL] [Abstract][Full Text] [Related]
40. An experimental comparison of respiration measuring techniques in fermenters and shake flasks: exhaust gas analyzer vs. RAMOS device vs. respirometer. Seletzky JM; Noack U; Hahn S; Knoll A; Amoabediny G; Büchs J J Ind Microbiol Biotechnol; 2007 Feb; 34(2):123-30. PubMed ID: 17001475 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]