These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29859042)

  • 41. Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and induced resistance against necrotrophic pathogens and lepidopteran herbivores.
    Oka K; Amano Y; Katou S; Seo S; Kawazu K; Mochizuki A; Kuchitsu K; Mitsuhara I
    Mol Plant Microbe Interact; 2013 Jun; 26(6):668-75. PubMed ID: 23425101
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress.
    Kim YH; Khan AL; Hamayun M; Kang SM; Beom YJ; Lee IJ
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1175-85. PubMed ID: 21465280
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arabidopsis jasmonate signaling pathway.
    Gfeller A; Liechti R; Farmer EE
    Sci STKE; 2006 Feb; 2006(322):cm1. PubMed ID: 16478935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes.
    Tyagi S; Mulla SI; Lee KJ; Chae JC; Shukla P
    Crit Rev Biotechnol; 2018 Dec; 38(8):1277-1296. PubMed ID: 29862848
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways.
    Kurth F; Mailänder S; Bönn M; Feldhahn L; Herrmann S; Große I; Buscot F; Schrey SD; Tarkka MT
    Mol Plant Microbe Interact; 2014 Sep; 27(9):891-900. PubMed ID: 24779643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-invasive quantification of ethylene in attached fruit headspace at 1 p.p.b. by gas chromatography-mass spectrometry.
    Pereira L; Pujol M; Garcia-Mas J; Phillips MA
    Plant J; 2017 Jul; 91(1):172-183. PubMed ID: 28370685
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Isoflavone accumulation associated with cell structural changes in Maackia amurensis suspension cultures elicited by methyl jasmonate, salicylic acid and nitric oxide].
    Luo JP; Xia N; Shen GD
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2006 Oct; 39(5):438-44. PubMed ID: 17117554
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Jasmonate biochemical pathway.
    Liechti R; Farmer EE
    Sci STKE; 2006 Feb; 2006(322):cm3. PubMed ID: 16478937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and quantification of methyl jasmonate in leaf volatiles of Arabidopsis thaliana using solid-phase microextraction in combination with gas chromatography and mass spectrometry.
    Meyer R; Rautenbach GF; Dubery IA
    Phytochem Anal; 2003; 14(3):155-9. PubMed ID: 12793462
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Low Cost Compact Measurement System Constructed Using a Smart Electrochemical Sensor for the Real-Time Discrimination of Fruit Ripening.
    Ma L; Wang L; Chen R; Chang K; Wang S; Hu X; Sun X; Lu Z; Sun H; Guo Q; Jiang M; Hu J
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27070614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.
    Kauss H; Jeblick W; Ziegler J; Krabler W
    Plant Physiol; 1994 May; 105(1):89-94. PubMed ID: 12232189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colorimetric Sensor Array for Monitoring CO and Ethylene.
    Li Z; Suslick KS
    Anal Chem; 2019 Jan; 91(1):797-802. PubMed ID: 30547588
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An illuminated respiratory activity monitoring system identifies priming-active compounds in plant seedlings.
    Loogen J; Müller A; Balzer A; Weber S; Schmitz K; Krug R; Schaffrath U; Pietruszk J; Conrath U; Büchs J
    BMC Plant Biol; 2021 Jul; 21(1):324. PubMed ID: 34225655
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid and Visual Detection and Quantitation of Ethylene Released from Ripening Fruits: The New Use of Grubbs Catalyst.
    Sun M; Yang X; Zhang Y; Wang S; Wong MW; Ni R; Huang D
    J Agric Food Chem; 2019 Jan; 67(1):507-513. PubMed ID: 30508479
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time-Resolved Monitoring of the Oxygen Transfer Rate of Chinese Hamster Ovary Cells Provides Insights Into Culture Behavior in Shake Flasks.
    Ihling N; Munkler LP; Berg C; Reichenbächer B; Wirth J; Lang D; Wagner R; Büchs J
    Front Bioeng Biotechnol; 2021; 9():725498. PubMed ID: 34513814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ethylene Measurements from Sweet Fruits Flowers Using Photoacoustic Spectroscopy.
    Popa C
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30909457
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential errors in conventional DOT measurement techniques in shake flasks and verification using a rotating flexitube optical sensor.
    Hansen S; Kensy F; Käser A; Büchs J
    BMC Biotechnol; 2011 May; 11():49. PubMed ID: 21569304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combined dissolved oxygen tension and online viscosity measurements in shake flask cultivations via infrared fluorescent oxygen-sensitive nanoparticles.
    Ladner T; Flitsch D; Lukacs M; Sieben M; Büchs J
    Biotechnol Bioeng; 2019 Dec; 116(12):3215-3227. PubMed ID: 31429921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of dissolved methane, ethane, and ethylene in ground water by a standard gas chromatographic technique.
    Kampbell DH; Vandegrift SA
    J Chromatogr Sci; 1998 May; 36(5):253-6. PubMed ID: 9599433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ethylene response factors in jasmonate signaling and defense response.
    Grennan AK
    Plant Physiol; 2008 Apr; 146(4):1457-8. PubMed ID: 18390488
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.