These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 29859065)
1. Enhancing thermal tolerance of Aspergillus niger PhyA phytase directed by structural comparison and computational simulation. Han N; Miao H; Yu T; Xu B; Yang Y; Wu Q; Zhang R; Huang Z BMC Biotechnol; 2018 Jun; 18(1):36. PubMed ID: 29859065 [TBL] [Abstract][Full Text] [Related]
2. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Zhang W; Mullaney EJ; Lei XG Appl Environ Microbiol; 2007 May; 73(9):3069-76. PubMed ID: 17351092 [TBL] [Abstract][Full Text] [Related]
3. Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis. Tang Z; Jin W; Sun R; Liao Y; Zhen T; Chen H; Wu Q; Gou L; Li C Enzyme Microb Technol; 2018 Jan; 108():74-81. PubMed ID: 29108630 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis. Hesampour A; Siadat SE; Malboobi MA; Mohandesi N; Arab SS; Ghahremanpour MM Appl Biochem Biotechnol; 2015 Mar; 175(5):2528-41. PubMed ID: 25527139 [TBL] [Abstract][Full Text] [Related]
5. Site-directed mutagenesis improves the thermostability and catalytic efficiency of Aspergillus niger N25 phytase mutated by I44E and T252R. Liao Y; Li CM; Chen H; Wu Q; Shan Z; Han XY Appl Biochem Biotechnol; 2013 Oct; 171(4):900-15. PubMed ID: 23907680 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase. Wyss M; Pasamontes L; Rémy R; Kohler J; Kusznir E; Gadient M; Müller F; van Loon APGM Appl Environ Microbiol; 1998 Nov; 64(11):4446-51. PubMed ID: 9797305 [TBL] [Abstract][Full Text] [Related]
7. Cumulative improvements of thermostability and pH-activity profile of Aspergillus niger PhyA phytase by site-directed mutagenesis. Zhang W; Lei XG Appl Microbiol Biotechnol; 2008 Jan; 77(5):1033-40. PubMed ID: 17968540 [TBL] [Abstract][Full Text] [Related]
8. Understanding thermostability factors of Aspergillus niger PhyA phytase: a molecular dynamics study. Noorbatcha IA; Sultan AM; Salleh HM; Amid A Protein J; 2013 Apr; 32(4):309-16. PubMed ID: 23636517 [TBL] [Abstract][Full Text] [Related]
9. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Tomschy A; Tessier M; Wyss M; Brugger R; Broger C; Schnoebelen L; van Loon AP; Pasamontes L Protein Sci; 2000 Jul; 9(7):1304-11. PubMed ID: 10933495 [TBL] [Abstract][Full Text] [Related]
10. Replacement P212H altered the pH-temperature profile of phytase from Aspergillus niger NII 08121. Ushasree MV; Vidya J; Pandey A Appl Biochem Biotechnol; 2015 Mar; 175(6):3084-92. PubMed ID: 25595493 [TBL] [Abstract][Full Text] [Related]
11. Rational design-based engineering of a thermostable phytase by site-directed mutagenesis. Fakhravar A; Hesampour A Mol Biol Rep; 2018 Dec; 45(6):2053-2061. PubMed ID: 30196454 [TBL] [Abstract][Full Text] [Related]
12. Insights into the unfolding pathway and identification of thermally sensitive regions of phytase from Aspergillus niger by molecular dynamics simulations. Kumar K; Patel K; Agrawal DC; Khire JM J Mol Model; 2015 Jun; 21(6):163. PubMed ID: 26037148 [TBL] [Abstract][Full Text] [Related]
13. Screening, cloning and overexpression of Aspergillus niger phytase (phyA) in Pichia pastoris with favourable characteristics. Zhao DM; Wang M; Mu XJ; Sun ML; Wang XY Lett Appl Microbiol; 2007 Nov; 45(5):522-8. PubMed ID: 17958557 [TBL] [Abstract][Full Text] [Related]
14. Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Kim T; Mullaney EJ; Porres JM; Roneker KR; Crowe S; Rice S; Ko T; Ullah AH; Daly CB; Welch R; Lei XG Appl Environ Microbiol; 2006 Jun; 72(6):4397-403. PubMed ID: 16751556 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Mullaney EJ; Daly CB; Kim T; Porres JM; Lei XG; Sethumadhavan K; Ullah AH Biochem Biophys Res Commun; 2002 Oct; 297(4):1016-20. PubMed ID: 12359257 [TBL] [Abstract][Full Text] [Related]
16. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Shivange AV; Roccatano D; Schwaneberg U Appl Microbiol Biotechnol; 2016 Jan; 100(1):227-42. PubMed ID: 26403922 [TBL] [Abstract][Full Text] [Related]
17. [Improving thermostability of Aspergillus niger phytase by elongation mutation]. Chen H; Wang HN; Yang WS; Zhao HX; Wu Q; Shan Z Sheng Wu Gong Cheng Xue Bao; 2005 Nov; 21(6):983-7. PubMed ID: 16468358 [TBL] [Abstract][Full Text] [Related]
18. Improving catalytic efficiency and maximum activity at low pH of Aspergillus neoniger phytase using rational design. Zhou S; Liu Z; Xie W; Yu Y; Ning C; Yuan M; Mou H Int J Biol Macromol; 2019 Jun; 131():1117-1124. PubMed ID: 30910675 [TBL] [Abstract][Full Text] [Related]
19. Structure-based fragment shuffling of two fungal phytases for combination of desirable properties. Bei J; Chen Z; Fu J; Jiang Z; Wang J; Wang X J Biotechnol; 2009 Jan; 139(2):186-93. PubMed ID: 18824052 [TBL] [Abstract][Full Text] [Related]
20. Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. Promdonkoy P; Tang K; Sornlake W; Harnpicharnchai P; Kobayashi RS; Ruanglek V; Upathanpreecha T; Vesaratchavest M; Eurwilaichitr L; Tanapongpipat S FEMS Microbiol Lett; 2009 Jan; 290(1):18-24. PubMed ID: 19025560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]