These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29859418)

  • 1. A transverse isotropic constitutive model for the aortic valve tissue incorporating rate-dependency and fibre dispersion: Application to biaxial deformation.
    Anssari-Benam A; Tseng YT; Bucchi A
    J Mech Behav Biomed Mater; 2018 Sep; 85():80-93. PubMed ID: 29859418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate-dependency of the mechanical behaviour of semilunar heart valves under biaxial deformation.
    Anssari-Benam A; Tseng YT; Holzapfel GA; Bucchi A
    Acta Biomater; 2019 Apr; 88():120-130. PubMed ID: 30753940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transverse isotropic viscoelastic constitutive model for aortic valve tissue.
    Anssari-Benam A; Bucchi A; Screen HR; Evans SL
    R Soc Open Sci; 2017 Jan; 4(1):160585. PubMed ID: 28280556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the micromechanics of stress-relaxation and creep behaviours in the aortic valve.
    Anssari-Benam A; Screen HRC; Bucchi A
    J Mech Behav Biomed Mater; 2019 May; 93():230-245. PubMed ID: 30844614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation.
    Anssari-Benam A; Bader DL; Screen HR
    J Mater Sci Mater Med; 2011 Feb; 22(2):253-62. PubMed ID: 21221737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the rate-dependency of the mechanical behaviour of the aortic heart valve: An experimentally guided theoretical framework.
    Anssari-Benam A; Tseng YT; Pani M; Bucchi A
    J Mech Behav Biomed Mater; 2022 Oct; 134():105341. PubMed ID: 35969929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate-dependent mechanical behaviour of semilunar valves under biaxial deformation: From quasi-static to physiological loading rates.
    Anssari-Benam A; Tseng YT; Holzapfel GA; Bucchi A
    J Mech Behav Biomed Mater; 2020 Apr; 104():103645. PubMed ID: 32174403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibre-matrix interaction in the human annulus fibrosus.
    Guo Z; Shi X; Peng X; Caner F
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):193-205. PubMed ID: 22100094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Dissipation Function to Model the Rate-Dependent Mechanical Behavior of Semilunar Valve Leaflets.
    Anssari-Benam A; Tseng YT; Pani M; Bucchi A
    J Biomech Eng; 2023 Jul; 145(7):. PubMed ID: 36795016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modelling of the fibre-matrix interaction in biaxial loading for hyperelastic soft tissue models.
    Lu YT; Zhu HX; Richmond S; Middleton J
    Int J Numer Method Biomed Eng; 2012 Apr; 28(4):401-11. PubMed ID: 25365655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the correlation between continuum mechanics entities and cell activity in biological soft tissues: assessment of three possible criteria for cell-controlled fibre reorientation in collagen gels and collagenous tissues.
    Kroon M
    J Theor Biol; 2010 May; 264(1):66-76. PubMed ID: 20045702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Deformation of the Elastin Network in the Aortic Valve.
    Anssari-Benam A; Bucchi A
    J Biomech Eng; 2018 Jan; 140(1):. PubMed ID: 28916836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations.
    Zhang W; Feng Y; Lee CH; Billiar KL; Sacks MS
    J Biomech Eng; 2015 Jun; 137(6):064501. PubMed ID: 25429606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp--Part I: Experimental results.
    Billiar KL; Sacks MS
    J Biomech Eng; 2000 Feb; 122(1):23-30. PubMed ID: 10790826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions.
    Reutlinger C; Bürki A; Brandejsky V; Ebert L; Büchler P
    J Mech Behav Biomed Mater; 2014 Feb; 30():279-89. PubMed ID: 24361932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.
    Stella JA; Liao J; Sacks MS
    J Biomech; 2007; 40(14):3169-77. PubMed ID: 17570376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta.
    Horný L; Netušil M; Daniel M
    J Mech Behav Biomed Mater; 2014 Oct; 38():39-51. PubMed ID: 25016175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian constitutive model selection framework for biaxial mechanical testing of planar soft tissues: Application to porcine aortic valves.
    Aggarwal A; Hudson LT; Laurence DW; Lee CH; Pant S
    J Mech Behav Biomed Mater; 2023 Feb; 138():105657. PubMed ID: 36634438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.