These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29859464)

  • 1. Simulation experiments to elucidate variable fluorescence as a potential proxy for bulk microalgal viability from natural water, sediments and biofilms: Implication in ships ballast water management.
    Patil JS; Anil AC
    J Environ Manage; 2018 Sep; 222():242-249. PubMed ID: 29859464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of biofilm on fluorescence measurements derived from fast repetition rate fluorometers.
    Patil JS; Saino T
    Biofouling; 2015; 31(5):417-32. PubMed ID: 26098144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential microbial bioinvasions via ships' ballast water, sediment, and biofilm.
    Drake LA; Doblin MA; Dobbs FC
    Mar Pollut Bull; 2007; 55(7-9):333-41. PubMed ID: 17215010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Setting a size-exclusion limit to remove toxic dinoflagellate cysts from ships' ballast water.
    Doblin MA; Dobbs FC
    Mar Pollut Bull; 2006 Mar; 52(3):259-63. PubMed ID: 16480748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark survival in biofilm-forming microalgae: potential for colonizing benthic ecosystems.
    Patil JS; D'souza S
    FEMS Microbiol Ecol; 2022 May; 98(6):. PubMed ID: 35511205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water.
    Maw MM; Wang J; Li F; Jiang J; Song Y; Pan X
    Int J Mol Sci; 2015 Oct; 16(10):25560-75. PubMed ID: 26516836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of microbial populations in a ship's ballast water and sediments on a voyage from Japan to Qatar.
    Mimura H; Katakura R; Ishida H
    Mar Pollut Bull; 2005 Jul; 50(7):751-7. PubMed ID: 15993142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip.
    Wang Y; Wang J; Wu X; Jiang Z; Wang W
    Electrophoresis; 2019 Mar; 40(6):969-978. PubMed ID: 30221789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrospective eDNA assessment of potentially harmful algae in historical ship ballast tank and marine port sediments.
    Shaw JLA; Weyrich LS; Hallegraeff G; Cooper A
    Mol Ecol; 2019 May; 28(10):2476-2485. PubMed ID: 30793442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition and influencing factors of bacterial communities in ballast tank sediments: Implications for ballast water and sediment management.
    Lv B; Cui Y; Tian W; Feng D
    Mar Environ Res; 2017 Dec; 132():14-22. PubMed ID: 29046225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying indicatively living phytoplankton cells in ballast water samples--recommendations for Port State Control.
    Gollasch S; David M; Francé J; Mozetič P
    Mar Pollut Bull; 2015 Dec; 101(2):768-75. PubMed ID: 26454632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Difficulties in obtaining representative samples for compliance with the Ballast Water Management Convention.
    Carney KJ; Basurko OC; Pazouki K; Marsham S; Delany JE; Desai DV; Anil AC; Mesbahi E
    Mar Pollut Bull; 2013 Mar; 68(1-2):99-105. PubMed ID: 23337372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring viability of dinoflagellate cysts and diatoms with stains to test the efficiency of facsimile treatments possibly applicable to ships' ballast water and sediment.
    Tang YZ; Shang L; Dobbs FC
    Harmful Algae; 2022 May; 114():102220. PubMed ID: 35550298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the characterization, ecological function and assembly processes of bacterial communities in ship ballast water and sediments.
    Lv B; Shi J; Li T; Ren L; Tian W; Lu X; Han Y; Cui Y; Jiang T
    Sci Total Environ; 2022 Apr; 816():152721. PubMed ID: 34974026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Properties of Corals Distort Variable Chlorophyll Fluorescence Measurements.
    Wangpraseurt D; Lichtenberg M; Jacques SL; Larkum AWD; Kühl M
    Plant Physiol; 2019 Apr; 179(4):1608-1619. PubMed ID: 30692219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of microalgae in ballast water with pulse intense light treatment.
    Feng D; Shi J; Sun D
    Mar Pollut Bull; 2015 Jan; 90(1-2):299-303. PubMed ID: 25440896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on Calibration Method for the Count of Living Algal Cells Detection Based on Variable Fluorescence in Ballast Water.
    Hu L; Hua H; Yin G; Liang T; Zhao N
    J Fluoresc; 2024 Jul; 34(4):1485-1492. PubMed ID: 37615894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing indicators of arsenic toxicity using variable fluorescence in a commercially valuable microalgae: Physiological and toxicological aspects.
    Das S; Lizon F; Gevaert F; Bialais C; Duong G; Ouddane B; Souissi S
    J Hazard Mater; 2023 Jun; 452():131215. PubMed ID: 37001210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ballast water sediment management in ports.
    Maglić L; Frančić V; Zec D; David M
    Mar Pollut Bull; 2019 Oct; 147():237-244. PubMed ID: 28969909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical studies of sediment removal in double bottom ballast tanks.
    Pereira LS; Cheng LY; Ribeiro GHS; Osello PHS; Motezuki FK; Pereira NN
    Mar Pollut Bull; 2021 Jul; 168():112399. PubMed ID: 33932841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.