These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 29859924)
21. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Boyd BJ; Khoo SM; Whittaker DV; Davey G; Porter CJ Int J Pharm; 2007 Aug; 340(1-2):52-60. PubMed ID: 17467935 [TBL] [Abstract][Full Text] [Related]
22. Hexagonal Liquid Crystalline Nanodispersions Proven Superiority for Enhanced Oral Delivery of Rosuvastatin: In Vitro Characterization and In Vivo Pharmacokinetic Study. Gabr MM; Mortada SM; Sallam MA J Pharm Sci; 2017 Oct; 106(10):3103-3112. PubMed ID: 28479357 [TBL] [Abstract][Full Text] [Related]
23. Improved oral bioavailability of alendronate via the mucoadhesive liposomal delivery system. Han HK; Shin HJ; Ha DH Eur J Pharm Sci; 2012 Aug; 46(5):500-7. PubMed ID: 22522117 [TBL] [Abstract][Full Text] [Related]
24. The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Chen MC; Wong HS; Lin KJ; Chen HL; Wey SP; Sonaje K; Lin YH; Chu CY; Sung HW Biomaterials; 2009 Dec; 30(34):6629-37. PubMed ID: 19767097 [TBL] [Abstract][Full Text] [Related]
25. Polysaccharides-based nanocomplexes for the prolonged delivery of enoxaparin: In-vitro and in-vivo evaluation. Ibrahim SS; Osman R; Awad GAS; Mortada ND; Geneidi AS Int J Pharm; 2017 Jun; 526(1-2):271-279. PubMed ID: 28479519 [TBL] [Abstract][Full Text] [Related]
26. Improved intestinal absorption and oral bioavailability of astaxanthin using poly (ethylene glycol)-graft-chitosan nanoparticles: preparation, in vitro evaluation, and pharmacokinetics in rats. Zhu Y; Gu Z; Liao Y; Li S; Xue Y; Firempong MA; Xu Y; Yu J; Smyth HD; Xu X J Sci Food Agric; 2022 Feb; 102(3):1002-1011. PubMed ID: 34312873 [TBL] [Abstract][Full Text] [Related]
27. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases. Rao S; Richter K; Nguyen TH; Boyd BJ; Porter CJ; Tan A; Prestidge CA Mol Pharm; 2015 Dec; 12(12):4424-33. PubMed ID: 26523928 [TBL] [Abstract][Full Text] [Related]
28. Development, in vitro and in vivo evaluation of a self-emulsifying drug delivery system (SEDDS) for oral enoxaparin administration. Zupančič O; Grieβinger JA; Rohrer J; Pereira de Sousa I; Danninger L; Partenhauser A; Sündermann NE; Laffleur F; Bernkop-Schnürch A Eur J Pharm Biopharm; 2016 Dec; 109():113-121. PubMed ID: 27693677 [TBL] [Abstract][Full Text] [Related]
29. Topical delivery of enoxaparin using nanostructured lipid carrier. Jain A; Mehra NK; Nahar M; Jain NK J Microencapsul; 2013; 30(7):709-15. PubMed ID: 23534492 [TBL] [Abstract][Full Text] [Related]
30. Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome. Qiang F; Shin HJ; Lee BJ; Han HK Int J Pharm; 2012 Jul; 430(1-2):161-6. PubMed ID: 22525082 [TBL] [Abstract][Full Text] [Related]
31. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Feng C; Wang Z; Jiang C; Kong M; Zhou X; Li Y; Cheng X; Chen X Int J Pharm; 2013 Nov; 457(1):158-67. PubMed ID: 24029170 [TBL] [Abstract][Full Text] [Related]
32. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Venishetty VK; Chede R; Komuravelli R; Adepu L; Sistla R; Diwan PV Colloids Surf B Biointerfaces; 2012 Jun; 95():1-9. PubMed ID: 22463845 [TBL] [Abstract][Full Text] [Related]
33. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Luo Y; Teng Z; Li Y; Wang Q Carbohydr Polym; 2015 May; 122():221-9. PubMed ID: 25817662 [TBL] [Abstract][Full Text] [Related]
34. Preparation, optimization, and in-vitro/in-vivo/ex-vivo characterization of chitosan-heparin nanoparticles: drug-induced gelation. Shahbazi MA; Hamidi M; Mohammadi-Samani S J Pharm Pharmacol; 2013 Aug; 65(8):1118-33. PubMed ID: 23837580 [TBL] [Abstract][Full Text] [Related]
35. The use of chitosan-6-mercaptonicotinic acid nanoparticles for oral peptide drug delivery. Millotti G; Perera G; Vigl C; Pickl K; Sinner FM; Bernkop-Schnürch A Drug Deliv; 2011 Apr; 18(3):190-7. PubMed ID: 21039318 [TBL] [Abstract][Full Text] [Related]
36. Supercritical fluid precipitation of ketoprofen in novel structured lipid carriers for enhanced mucosal delivery--a comparison with solid lipid particles. Gonçalves VSS; Matias AA; Rodríguez-Rojo S; Nogueira ID; Duarte CMM Int J Pharm; 2015 Nov; 495(1):302-311. PubMed ID: 26277371 [TBL] [Abstract][Full Text] [Related]
37. Lipid-Polymer Hybrid Nanoparticles Synthesized via Lipid-Based Surface Engineering for a robust drug delivery platform. Soomherun N; Kreua-Ongarjnukool N; Niyomthai ST; Chumnanvej S Colloids Surf B Biointerfaces; 2024 May; 237():113858. PubMed ID: 38547797 [TBL] [Abstract][Full Text] [Related]
38. Comparative study of Pluronic(®) F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Chen D; Xia D; Li X; Zhu Q; Yu H; Zhu C; Gan Y Int J Pharm; 2013 Jun; 449(1-2):1-9. PubMed ID: 23583840 [TBL] [Abstract][Full Text] [Related]
39. Rethinking carbamazepine oral delivery using polymer-lipid hybrid nanoparticles. Ana R; Mendes M; Sousa J; Pais A; Falcão A; Fortuna A; Vitorino C Int J Pharm; 2019 Jan; 554():352-365. PubMed ID: 30439493 [TBL] [Abstract][Full Text] [Related]
40. Improved oral delivery of tilianin through lipid-polymer hybrid nanoparticles to enhance bioavailability. Zeng C; Zheng R; Yang X; Du Y; Xing J; Lan W Biochem Biophys Res Commun; 2019 Nov; 519(2):316-322. PubMed ID: 31506175 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]