These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 29860027)

  • 1. Patient Similarity Networks for Precision Medicine.
    Pai S; Bader GD
    J Mol Biol; 2018 Sep; 430(18 Pt A):2924-2938. PubMed ID: 29860027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. netDx: Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks.
    Pai S; Weber P; Isserlin R; Kaka H; Hui S; Shah MA; Giudice L; Giugno R; Nøhr AK; Baumbach J; Bader GD
    F1000Res; 2020; 9():1239. PubMed ID: 33628435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. netDx: interpretable patient classification using integrated patient similarity networks.
    Pai S; Hui S; Isserlin R; Shah MA; Kaka H; Bader GD
    Mol Syst Biol; 2019 Mar; 15(3):e8497. PubMed ID: 30872331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network Approaches for Precision Oncology.
    Pai S
    Adv Exp Med Biol; 2022; 1361():199-213. PubMed ID: 35230690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical phenotyping in selected national networks: demonstrating the need for high-throughput, portable, and computational methods.
    Richesson RL; Sun J; Pathak J; Kho AN; Denny JC
    Artif Intell Med; 2016 Jul; 71():57-61. PubMed ID: 27506131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. StellarPath: Hierarchical-vertical multi-omics classifier synergizes stable markers and interpretable similarity networks for patient profiling.
    Giudice L; Mohamed A; Malm T
    PLoS Comput Biol; 2024 Apr; 20(4):e1012022. PubMed ID: 38607982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning and genomics: precision medicine versus patient privacy.
    Azencott CA
    Philos Trans A Math Phys Eng Sci; 2018 Sep; 376(2128):. PubMed ID: 30082298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial intelligence, physiological genomics, and precision medicine.
    Williams AM; Liu Y; Regner KR; Jotterand F; Liu P; Liang M
    Physiol Genomics; 2018 Apr; 50(4):237-243. PubMed ID: 29373082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine.
    Grapov D; Fahrmann J; Wanichthanarak K; Khoomrung S
    OMICS; 2018 Oct; 22(10):630-636. PubMed ID: 30124358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in AI and machine learning for predictive medicine.
    Sharma A; Lysenko A; Jia S; Boroevich KA; Tsunoda T
    J Hum Genet; 2024 Oct; 69(10):487-497. PubMed ID: 38424184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for precision medicine.
    MacEachern SJ; Forkert ND
    Genome; 2021 Apr; 64(4):416-425. PubMed ID: 33091314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explainable deep transfer learning model for disease risk prediction using high-dimensional genomic data.
    Liu L; Meng Q; Weng C; Lu Q; Wang T; Wen Y
    PLoS Comput Biol; 2022 Jul; 18(7):e1010328. PubMed ID: 35839250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Precision Medicine in Allergic Disease: Progress and Challenges.
    Proper SP; Azouz NP; Mersha TB
    Front Immunol; 2021; 12():720746. PubMed ID: 34484229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Role of Image Fusion in Brain Tumor Classification Models Based on Machine Learning Algorithm for Personalized Medicine.
    Nanmaran R; Srimathi S; Yamuna G; Thanigaivel S; Vickram AS; Priya AK; Karthick A; Karpagam J; Mohanavel V; Muhibbullah M
    Comput Math Methods Med; 2022; 2022():7137524. PubMed ID: 35178119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting cancer outcomes from histology and genomics using convolutional networks.
    Mobadersany P; Yousefi S; Amgad M; Gutman DA; Barnholtz-Sloan JS; Velázquez Vega JE; Brat DJ; Cooper LAD
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E2970-E2979. PubMed ID: 29531073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Emerging Potential for Network Analysis to Inform Precision Cancer Medicine.
    Ozturk K; Dow M; Carlin DE; Bejar R; Carter H
    J Mol Biol; 2018 Sep; 430(18 Pt A):2875-2899. PubMed ID: 29908887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dropout-regularized classifier development approach optimized for precision medicine test discovery from omics data.
    Roder J; Oliveira C; Net L; Tsypin M; Linstid B; Roder H
    BMC Bioinformatics; 2019 Jun; 20(1):325. PubMed ID: 31196002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine.
    Vadapalli S; Abdelhalim H; Zeeshan S; Ahmed Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35595537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics Approaches to Predict Drug Responses from Genomic Sequencing.
    Madhukar NS; Elemento O
    Methods Mol Biol; 2018; 1711():277-296. PubMed ID: 29344895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.