BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

970 related articles for article (PubMed ID: 29860093)

  • 1. Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.
    Ly T; Pamer C; Dang O; Brajovic S; Haider S; Botsis T; Milward D; Winter A; Lu S; Ball R
    J Biomed Inform; 2018 Jul; 83():73-86. PubMed ID: 29860093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions.
    Combi C; Zorzi M; Pozzani G; Moretti U; Arzenton E
    J Biomed Inform; 2018 Aug; 84():184-199. PubMed ID: 29981491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Facebook and Twitter Monitoring to Detect Safety Signals for Medical Products: An Analysis of Recent FDA Safety Alerts.
    Pierce CE; Bouri K; Pamer C; Proestel S; Rodriguez HW; Van Le H; Freifeld CC; Brownstein JS; Walderhaug M; Edwards IR; Dasgupta N
    Drug Saf; 2017 Apr; 40(4):317-331. PubMed ID: 28044249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADE Eval: An Evaluation of Text Processing Systems for Adverse Event Extraction from Drug Labels for Pharmacovigilance.
    Bayer S; Clark C; Dang O; Aberdeen J; Brajovic S; Swank K; Hirschman L; Ball R
    Drug Saf; 2021 Jan; 44(1):83-94. PubMed ID: 33006728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Pharmacovigilance Signaling System Based on FDA Regulatory Action and Post-Marketing Adverse Event Reports.
    Hoffman KB; Dimbil M; Tatonetti NP; Kyle RF
    Drug Saf; 2016 Jun; 39(6):561-75. PubMed ID: 26946292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of text processing methods in social media-based signal detection.
    Gavrielov-Yusim N; Kürzinger ML; Nishikawa C; Pan C; Pouget J; Epstein LB; Golant Y; Tcherny-Lessenot S; Lin S; Hamelin B; Juhaeri J
    Pharmacoepidemiol Drug Saf; 2019 Oct; 28(10):1309-1317. PubMed ID: 31392844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer.
    Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A
    Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods and pitfalls in searching drug safety databases utilising the Medical Dictionary for Regulatory Activities (MedDRA).
    Brown EG
    Drug Saf; 2003; 26(3):145-58. PubMed ID: 12580645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A real-world pharmacovigilance study of FDA Adverse Event Reporting System (FAERS) events for osimertinib.
    Yin Y; Shu Y; Zhu J; Li F; Li J
    Sci Rep; 2022 Nov; 12(1):19555. PubMed ID: 36380085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal detection of human papillomavirus vaccines using the Korea Adverse Events Reporting System database, between 2005 and 2016.
    Ran J; Yang JY; Lee JH; Kim HJ; Choi JY; Shin JY
    Int J Clin Pharm; 2019 Oct; 41(5):1365-1372. PubMed ID: 31313003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation and comparison of two text mining methods with a standard pharmacovigilance method for signal detection of medication errors.
    Eskildsen NK; Eriksson R; Christensen SB; Aghassipour TS; Bygsø MJ; Brunak S; Hansen SL
    BMC Med Inform Decis Mak; 2020 May; 20(1):94. PubMed ID: 32448248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital drug safety surveillance: monitoring pharmaceutical products in twitter.
    Freifeld CC; Brownstein JS; Menone CM; Bao W; Filice R; Kass-Hout T; Dasgupta N
    Drug Saf; 2014 May; 37(5):343-50. PubMed ID: 24777653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of serious adverse drug reactions using FDA-approved drug labeling and MedDRA.
    Wu L; Ingle T; Liu Z; Zhao-Wong A; Harris S; Thakkar S; Zhou G; Yang J; Xu J; Mehta D; Ge W; Tong W; Fang H
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):97. PubMed ID: 30871458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining FDA drug labels for medical conditions.
    Li Q; Deleger L; Lingren T; Zhai H; Kaiser M; Stoutenborough L; Jegga AG; Cohen KB; Solti I
    BMC Med Inform Decis Mak; 2013 Apr; 13():53. PubMed ID: 23617267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MedDRA Labeling Groupings to Improve Safety Communication in Product Labels.
    Große-Michaelis I; Proestel S; Rao RM; Dillman BS; Bader-Weder S; Macdonald L; Gregory W
    Ther Innov Regul Sci; 2023 Jan; 57(1):1-6. PubMed ID: 35939205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using natural language processing to characterize and predict homeopathic product-associated adverse events in consumer reviews: comparison to reports to FDA Adverse Event Reporting System (FAERS).
    Konkel K; Oner N; Ahmed A; Jones SC; Berner ES; Zengul FD
    J Am Med Inform Assoc; 2023 Dec; 31(1):70-78. PubMed ID: 37847653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Language does not come "in boxes": Assessing discrepancies between adverse drug reactions spontaneous reporting and MedDRA® codes in European Portuguese.
    Inácio P; Airaksinen M; Cavaco A
    Res Social Adm Pharm; 2015; 11(5):664-74. PubMed ID: 25596069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MedDRA and pharmacovigilance: a complex and little-evaluated tool.
    Prescrire Int; 2016 Oct; 25(175):247-250. PubMed ID: 30645835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OntoADR a semantic resource describing adverse drug reactions to support searching, coding, and information retrieval.
    Souvignet J; Declerck G; Asfari H; Jaulent MC; Bousquet C
    J Biomed Inform; 2016 Oct; 63():100-107. PubMed ID: 27369567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semantic distance-based creation of clusters of pharmacovigilance terms and their evaluation.
    Dupuch M; Grabar N
    J Biomed Inform; 2015 Apr; 54():174-85. PubMed ID: 25659451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.