These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1024 related articles for article (PubMed ID: 29860093)
1. Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology. Ly T; Pamer C; Dang O; Brajovic S; Haider S; Botsis T; Milward D; Winter A; Lu S; Ball R J Biomed Inform; 2018 Jul; 83():73-86. PubMed ID: 29860093 [TBL] [Abstract][Full Text] [Related]
2. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions. Combi C; Zorzi M; Pozzani G; Moretti U; Arzenton E J Biomed Inform; 2018 Aug; 84():184-199. PubMed ID: 29981491 [TBL] [Abstract][Full Text] [Related]
3. ADE Eval: An Evaluation of Text Processing Systems for Adverse Event Extraction from Drug Labels for Pharmacovigilance. Bayer S; Clark C; Dang O; Aberdeen J; Brajovic S; Swank K; Hirschman L; Ball R Drug Saf; 2021 Jan; 44(1):83-94. PubMed ID: 33006728 [TBL] [Abstract][Full Text] [Related]
4. A Pharmacovigilance Signaling System Based on FDA Regulatory Action and Post-Marketing Adverse Event Reports. Hoffman KB; Dimbil M; Tatonetti NP; Kyle RF Drug Saf; 2016 Jun; 39(6):561-75. PubMed ID: 26946292 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Facebook and Twitter Monitoring to Detect Safety Signals for Medical Products: An Analysis of Recent FDA Safety Alerts. Pierce CE; Bouri K; Pamer C; Proestel S; Rodriguez HW; Van Le H; Freifeld CC; Brownstein JS; Walderhaug M; Edwards IR; Dasgupta N Drug Saf; 2017 Apr; 40(4):317-331. PubMed ID: 28044249 [TBL] [Abstract][Full Text] [Related]
6. Comparison of text processing methods in social media-based signal detection. Gavrielov-Yusim N; Kürzinger ML; Nishikawa C; Pan C; Pouget J; Epstein LB; Golant Y; Tcherny-Lessenot S; Lin S; Hamelin B; Juhaeri J Pharmacoepidemiol Drug Saf; 2019 Oct; 28(10):1309-1317. PubMed ID: 31392844 [TBL] [Abstract][Full Text] [Related]
7. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer. Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013 [TBL] [Abstract][Full Text] [Related]
8. Methods and pitfalls in searching drug safety databases utilising the Medical Dictionary for Regulatory Activities (MedDRA). Brown EG Drug Saf; 2003; 26(3):145-58. PubMed ID: 12580645 [TBL] [Abstract][Full Text] [Related]
9. A real-world pharmacovigilance study of FDA Adverse Event Reporting System (FAERS) events for osimertinib. Yin Y; Shu Y; Zhu J; Li F; Li J Sci Rep; 2022 Nov; 12(1):19555. PubMed ID: 36380085 [TBL] [Abstract][Full Text] [Related]
10. Signal detection of human papillomavirus vaccines using the Korea Adverse Events Reporting System database, between 2005 and 2016. Ran J; Yang JY; Lee JH; Kim HJ; Choi JY; Shin JY Int J Clin Pharm; 2019 Oct; 41(5):1365-1372. PubMed ID: 31313003 [TBL] [Abstract][Full Text] [Related]
11. Implementation and comparison of two text mining methods with a standard pharmacovigilance method for signal detection of medication errors. Eskildsen NK; Eriksson R; Christensen SB; Aghassipour TS; Bygsø MJ; Brunak S; Hansen SL BMC Med Inform Decis Mak; 2020 May; 20(1):94. PubMed ID: 32448248 [TBL] [Abstract][Full Text] [Related]
12. Digital drug safety surveillance: monitoring pharmaceutical products in twitter. Freifeld CC; Brownstein JS; Menone CM; Bao W; Filice R; Kass-Hout T; Dasgupta N Drug Saf; 2014 May; 37(5):343-50. PubMed ID: 24777653 [TBL] [Abstract][Full Text] [Related]
13. Study of serious adverse drug reactions using FDA-approved drug labeling and MedDRA. Wu L; Ingle T; Liu Z; Zhao-Wong A; Harris S; Thakkar S; Zhou G; Yang J; Xu J; Mehta D; Ge W; Tong W; Fang H BMC Bioinformatics; 2019 Mar; 20(Suppl 2):97. PubMed ID: 30871458 [TBL] [Abstract][Full Text] [Related]
14. Mining FDA drug labels for medical conditions. Li Q; Deleger L; Lingren T; Zhai H; Kaiser M; Stoutenborough L; Jegga AG; Cohen KB; Solti I BMC Med Inform Decis Mak; 2013 Apr; 13():53. PubMed ID: 23617267 [TBL] [Abstract][Full Text] [Related]
15. MedDRA Labeling Groupings to Improve Safety Communication in Product Labels. Große-Michaelis I; Proestel S; Rao RM; Dillman BS; Bader-Weder S; Macdonald L; Gregory W Ther Innov Regul Sci; 2023 Jan; 57(1):1-6. PubMed ID: 35939205 [TBL] [Abstract][Full Text] [Related]
16. Language does not come "in boxes": Assessing discrepancies between adverse drug reactions spontaneous reporting and MedDRA® codes in European Portuguese. Inácio P; Airaksinen M; Cavaco A Res Social Adm Pharm; 2015; 11(5):664-74. PubMed ID: 25596069 [TBL] [Abstract][Full Text] [Related]
17. MedDRA and pharmacovigilance: a complex and little-evaluated tool. Prescrire Int; 2016 Oct; 25(175):247-250. PubMed ID: 30645835 [TBL] [Abstract][Full Text] [Related]
18. Using natural language processing to characterize and predict homeopathic product-associated adverse events in consumer reviews: comparison to reports to FDA Adverse Event Reporting System (FAERS). Konkel K; Oner N; Ahmed A; Jones SC; Berner ES; Zengul FD J Am Med Inform Assoc; 2023 Dec; 31(1):70-78. PubMed ID: 37847653 [TBL] [Abstract][Full Text] [Related]
19. OntoADR a semantic resource describing adverse drug reactions to support searching, coding, and information retrieval. Souvignet J; Declerck G; Asfari H; Jaulent MC; Bousquet C J Biomed Inform; 2016 Oct; 63():100-107. PubMed ID: 27369567 [TBL] [Abstract][Full Text] [Related]
20. Semantic distance-based creation of clusters of pharmacovigilance terms and their evaluation. Dupuch M; Grabar N J Biomed Inform; 2015 Apr; 54():174-85. PubMed ID: 25659451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]