These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 29860209)
1. Determining the glycation site specificity of human holo-transferrin. Silva AMN; Coimbra JTS; Castro MM; Oliveira Â; Brás NF; Fernandes PA; Ramos MJ; Rangel M J Inorg Biochem; 2018 Sep; 186():95-102. PubMed ID: 29860209 [TBL] [Abstract][Full Text] [Related]
2. The glycation site specificity of human serum transferrin is a determinant for transferrin's functional impairment under elevated glycaemic conditions. Silva AM; Sousa PR; Coimbra JT; Brás NF; Vitorino R; Fernandes PA; Ramos MJ; Rangel M; Domingues P Biochem J; 2014 Jul; 461(1):33-42. PubMed ID: 24716439 [TBL] [Abstract][Full Text] [Related]
3. A novel method to quantify in vivo transferrin glycation: applications in diabetes mellitus. Van Campenhout A; Van Campenhout C; Olyslager YS; Van Damme O; Lagrou AR; Manuel-y-Keenoy B Clin Chim Acta; 2006 Aug; 370(1-2):115-23. PubMed ID: 16513102 [TBL] [Abstract][Full Text] [Related]
4. Transferrin modifications and lipid peroxidation: implications in diabetes mellitus. van Campenhout A; van Campenhout CM; Lagrou AR; Manuel-y-Keenoy B Free Radic Res; 2003 Oct; 37(10):1069-77. PubMed ID: 14703796 [TBL] [Abstract][Full Text] [Related]
5. Tertiary structural changes associated with iron binding and release in hen serum transferrin: a crystallographic and spectroscopic study. Thakurta PG; Choudhury D; Dasgupta R; Dattagupta JK Biochem Biophys Res Commun; 2004 Apr; 316(4):1124-31. PubMed ID: 15044101 [TBL] [Abstract][Full Text] [Related]
6. The low pKa value of iron-binding ligand Tyr188 and its implication in iron release and anion binding of human transferrin. Sun X; Sun H; Ge R; Richter M; Woodworth RC; Mason AB; He QY FEBS Lett; 2004 Aug; 573(1-3):181-5. PubMed ID: 15327995 [TBL] [Abstract][Full Text] [Related]
7. Existence of a noncanonical state of iron-bound transferrin at endosomal pH revealed by hydrogen exchange and mass spectrometry. Bobst CE; Zhang M; Kaltashov IA J Mol Biol; 2009 May; 388(5):954-67. PubMed ID: 19324057 [TBL] [Abstract][Full Text] [Related]
8. Influence of non-enzymatic post-translation modifications on the ability of human serum albumin to bind iron. Implications for non-transferrin-bound iron speciation. Silva AM; Hider RC Biochim Biophys Acta; 2009 Oct; 1794(10):1449-58. PubMed ID: 19505594 [TBL] [Abstract][Full Text] [Related]
9. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. He QY; Mason AB; Tam BM; MacGillivray RT; Woodworth RC Biochemistry; 1999 Jul; 38(30):9704-11. PubMed ID: 10423249 [TBL] [Abstract][Full Text] [Related]
10. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins. Abdizadeh H; Atilgan AR; Atilgan C; Dedeoglu B Metallomics; 2017 Nov; 9(11):1513-1533. PubMed ID: 28967944 [TBL] [Abstract][Full Text] [Related]
11. X-ray Characterization of Conformational Changes of Human Apo- and Holo-Transferrin. Campos-Escamilla C; Siliqi D; Gonzalez-Ramirez LA; Lopez-Sanchez C; Gavira JA; Moreno A Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948188 [TBL] [Abstract][Full Text] [Related]
12. Exploring transferrin-receptor interactions at the single-molecule level. Yersin A; Osada T; Ikai A Biophys J; 2008 Jan; 94(1):230-40. PubMed ID: 17872962 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional consequences of binding site mutations in transferrin: crystal structures of the Asp63Glu and Arg124Ala mutants of the N-lobe of human transferrin. Baker HM; He QY; Briggs SK; Mason AB; Baker EN Biochemistry; 2003 Jun; 42(23):7084-9. PubMed ID: 12795604 [TBL] [Abstract][Full Text] [Related]
15. The pH-induced release of iron from transferrin investigated with a continuum electrostatic model. Lee DA; Goodfellow JM Biophys J; 1998 Jun; 74(6):2747-59. PubMed ID: 9635730 [TBL] [Abstract][Full Text] [Related]
16. A kinetically active site in the C-lobe of human transferrin. Zak O; Tam B; MacGillivray RT; Aisen P Biochemistry; 1997 Sep; 36(36):11036-43. PubMed ID: 9283096 [TBL] [Abstract][Full Text] [Related]
17. Effects of synergistic and non-synergistic anions on the iron binding site from serum transferrin: A molecular dynamic simulation analysis. Ghanbari Z; Housaindokht MR; Bozorgmehr MR; Izadyar M J Mol Graph Model; 2017 Nov; 78():176-186. PubMed ID: 29073555 [TBL] [Abstract][Full Text] [Related]
18. Biochemical and spectroscopic studies of human melanotransferrin (MTf): electron-paramagnetic resonance evidence for a difference between the iron-binding site of MTf and other transferrins. Farnaud S; Amini M; Rapisarda C; Cammack R; Bui T; Drake A; Evans RW; Suryo Rahmanto Y; Richardson DR Int J Biochem Cell Biol; 2008; 40(12):2739-45. PubMed ID: 18691669 [TBL] [Abstract][Full Text] [Related]
19. Tertiary structural changes and iron release from human serum transferrin. Mecklenburg SL; Donohoe RJ; Olah GA J Mol Biol; 1997 Aug; 270(5):739-50. PubMed ID: 9245601 [TBL] [Abstract][Full Text] [Related]
20. Effect of transferrin glycation induced by high glucose on HK-2 cells Ma Y; Zhou Q; Zhao P; Lv X; Gong C; Gao J; Liu J Front Endocrinol (Lausanne); 2022; 13():1009507. PubMed ID: 36778593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]