These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29860514)

  • 21. Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript.
    Benelli M; Pescucci C; Marseglia G; Severgnini M; Torricelli F; Magi A
    Bioinformatics; 2012 Dec; 28(24):3232-9. PubMed ID: 23093608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
    Dunn JG; Weissman JS
    BMC Genomics; 2016 Nov; 17(1):958. PubMed ID: 27875984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing.
    Chen Z; Gowan K; Leach SM; Viboolsittiseri SS; Mishra AK; Kadoishi T; Diener K; Gao B; Jones K; Wang JH
    BMC Genomics; 2016 Oct; 17(1):823. PubMed ID: 27769169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Protocol for the Detection of Fusion Transcripts Using RNA-Sequencing Data.
    Hamid F; Arora S; Chitkara P; Kumar S
    Methods Mol Biol; 2024; 2812():243-258. PubMed ID: 39068367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel fusion transcripts in human gastric cancer revealed by transcriptome analysis.
    Kim HP; Cho GA; Han SW; Shin JY; Jeong EG; Song SH; Lee WC; Lee KH; Bang D; Seo JS; Kim JI; Kim TY
    Oncogene; 2014 Nov; 33(47):5434-41. PubMed ID: 24240688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Open-access synthetic spike-in mRNA-seq data for cancer gene fusions.
    Tembe WD; Pond SJ; Legendre C; Chuang HY; Liang WS; Kim NE; Montel V; Wong S; McDaniel TK; Craig DW; Carpten JD
    BMC Genomics; 2014 Sep; 15(1):824. PubMed ID: 25266161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases.
    Shen L; Shao N; Liu X; Nestler E
    BMC Genomics; 2014 Apr; 15():284. PubMed ID: 24735413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FUSIM: a software tool for simulating fusion transcripts.
    Bruno AE; Miecznikowski JC; Qin M; Wang J; Liu S
    BMC Bioinformatics; 2013 Jan; 14():13. PubMed ID: 23323884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Next generation sequencing approach for detecting 491 fusion genes from human cancer.
    Urakami K; Shimoda Y; Ohshima K; Nagashima T; Serizawa M; Tanabe T; Saito J; Usui T; Watanabe Y; Naruoka A; Ohnami S; Ohnami S; Mochizuki T; Kusuhara M; Yamaguchi K
    Biomed Res; 2016; 37(1):51-62. PubMed ID: 26912140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of novel fusion genes in prostate cancer by targeted RNA capture and next-generation sequencing.
    Yang J; Chen Y; Lu J; Wang X; Wang L; Liang J; Sun ZS
    Acta Biochim Biophys Sin (Shanghai); 2018 Nov; 50(11):1166-1172. PubMed ID: 30307468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovering and understanding oncogenic gene fusions through data intensive computational approaches.
    Latysheva NS; Babu MM
    Nucleic Acids Res; 2016 Jun; 44(10):4487-503. PubMed ID: 27105842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Global Gene Expression Profiles.
    Kassambara A; Moreaux J
    Methods Mol Biol; 2018; 1792():157-166. PubMed ID: 29797258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Looking for Broken TAD Boundaries and Changes on DNA Interactions: Clinical Guide to 3D Chromatin Change Analysis in Complex Chromosomal Rearrangements and Chromothripsis.
    Yauy K; Gatinois V; Guignard T; Sati S; Puechberty J; Gaillard JB; Schneider A; Pellestor F
    Methods Mol Biol; 2018; 1769():353-361. PubMed ID: 29564835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of novel fusion transcripts in multiple myeloma.
    Lin M; Lee PL; Chiu L; Chua C; Ban KHK; Lin AHF; Chan ZL; Chung TH; Yan B; Chng WJ
    J Clin Pathol; 2018 Aug; 71(8):708-712. PubMed ID: 29453220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FindDNAFusion: An Analytical Pipeline with Multiple Software Tools Improves Detection of Cancer-Associated Gene Fusions from Genomic DNA.
    Pan X; Tu H; Mohamed N; Avenarius M; Caruthers S; Zhao W; Jones D
    J Mol Diagn; 2024 Feb; 26(2):140-149. PubMed ID: 38008285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel and established EWSR1 gene fusions and associations identified by next-generation sequencing and fluorescence in-situ hybridization.
    Krystel-Whittemore M; Taylor MS; Rivera M; Lennerz JK; Le LP; Dias-Santagata D; Iafrate AJ; Deshpande V; Chebib I; Nielsen GP; Wu CL; Nardi V
    Hum Pathol; 2019 Nov; 93():65-73. PubMed ID: 31430493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reproducible, Scalable Fusion Gene Detection from RNA-Seq.
    Arsenijevic V; Davis-Dusenbery BN
    Methods Mol Biol; 2016; 1381():223-37. PubMed ID: 26667464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fast detection of fusion genes from paired-end RNA-seq data.
    Vu TN; Deng W; Trac QT; Calza S; Hwang W; Pawitan Y
    BMC Genomics; 2018 Nov; 19(1):786. PubMed ID: 30382840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SOAPfusion: a robust and effective computational fusion discovery tool for RNA-seq reads.
    Wu J; Zhang W; Huang S; He Z; Cheng Y; Wang J; Lam TW; Peng Z; Yiu SM
    Bioinformatics; 2013 Dec; 29(23):2971-8. PubMed ID: 24123671
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.