These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29860588)

  • 1. A Comparative Study of Different EEG Reference Choices for Diagnosing Unipolar Depression.
    Mumtaz W; Malik AS
    Brain Topogr; 2018 Sep; 31(5):875-885. PubMed ID: 29860588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of the reference choice on scalp EEG connectivity estimation.
    Chella F; Pizzella V; Zappasodi F; Marzetti L
    J Neural Eng; 2016 Jun; 13(3):036016. PubMed ID: 27138114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning framework for automatic diagnosis of unipolar depression.
    Mumtaz W; Qayyum A
    Int J Med Inform; 2019 Dec; 132():103983. PubMed ID: 31586827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riemannian classifier enhances the accuracy of machine-learning-based diagnosis of PTSD using resting EEG.
    Kim YW; Kim S; Shim M; Jin MJ; Jeon H; Lee SH; Im CH
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Aug; 102():109960. PubMed ID: 32376342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Statistics of EEG Unipolar References: Derivations and Properties.
    Hu S; Yao D; Bringas-Vega ML; Qin Y; Valdes-Sosa PA
    Brain Topogr; 2019 Jul; 32(4):696-703. PubMed ID: 30972605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference.
    Yao D; Wang L; Oostenveld R; Nielsen KD; Arendt-Nielsen L; Chen AC
    Physiol Meas; 2005 Jun; 26(3):173-84. PubMed ID: 15798293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detrended fluctuation analysis for major depressive disorder.
    Mumtaz W; Malik AS; Ali SS; Yasin MA; Amin H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4162-5. PubMed ID: 26737211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal.
    Hosseinifard B; Moradi MH; Rostami R
    Comput Methods Programs Biomed; 2013 Mar; 109(3):339-45. PubMed ID: 23122719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD).
    Mumtaz W; Ali SSA; Yasin MAM; Malik AS
    Med Biol Eng Comput; 2018 Feb; 56(2):233-246. PubMed ID: 28702811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data.
    Ding X; Yue X; Zheng R; Bi C; Li D; Yao G
    J Affect Disord; 2019 May; 251():156-161. PubMed ID: 30925266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which Reference Should We Use for EEG and ERP practice?
    Yao D; Qin Y; Hu S; Dong L; Bringas Vega ML; Valdés Sosa PA
    Brain Topogr; 2019 Jul; 32(4):530-549. PubMed ID: 31037477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Different EEG References Influence Sensor Level Functional Connectivity Graphs.
    Huang Y; Zhang J; Cui Y; Yang G; He L; Liu Q; Yin G
    Front Neurosci; 2017; 11():368. PubMed ID: 28725175
    [No Abstract]   [Full Text] [Related]  

  • 13. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.
    Amin HU; Malik AS; Ahmad RF; Badruddin N; Kamel N; Hussain M; Chooi WT
    Australas Phys Eng Sci Med; 2015 Mar; 38(1):139-49. PubMed ID: 25649845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-based mild depressive detection using feature selection methods and classifiers.
    Li X; Hu B; Sun S; Cai H
    Comput Methods Programs Biomed; 2016 Nov; 136():151-61. PubMed ID: 27686712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature selection before EEG classification supports the diagnosis of Alzheimer's disease.
    Trambaiolli LR; Spolaôr N; Lorena AC; Anghinah R; Sato JR
    Clin Neurophysiol; 2017 Oct; 128(10):2058-2067. PubMed ID: 28866471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementing eigenvector methods/probabilistic neural networks for analysis of EEG signals.
    Ubeyli ED
    Neural Netw; 2008 Nov; 21(9):1410-7. PubMed ID: 18815008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis.
    Bachmann M; Päeske L; Kalev K; Aarma K; Lehtmets A; Ööpik P; Lass J; Hinrikus H
    Comput Methods Programs Biomed; 2018 Mar; 155():11-17. PubMed ID: 29512491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated EEG-based screening of depression using deep convolutional neural network.
    Acharya UR; Oh SL; Hagiwara Y; Tan JH; Adeli H; Subha DP
    Comput Methods Programs Biomed; 2018 Jul; 161():103-113. PubMed ID: 29852953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on Feature Selection Methods for Depression Detection Using Three-Electrode EEG Data.
    Cai H; Chen Y; Han J; Zhang X; Hu B
    Interdiscip Sci; 2018 Sep; 10(3):558-565. PubMed ID: 29728983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.