BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29860613)

  • 1. Analysis and expression of the carotenoid biosynthesis genes from Deinococcus wulumuqiensis R12 in engineered Escherichia coli.
    Xu X; Tian L; Xu J; Xie C; Jiang L; Huang H
    AMB Express; 2018 Jun; 8(1):94. PubMed ID: 29860613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids.
    Xu J; Xu X; Xu Q; Zhang Z; Jiang L; Huang H
    Bioprocess Biosyst Eng; 2018 Apr; 41(4):489-499. PubMed ID: 29313097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putative carotenoid genes expressed under the regulation of Shine-Dalgarno regions in Escherichia coli for efficient lycopene production.
    Jin W; Xu X; Jiang L; Zhang Z; Li S; Huang H
    Biotechnol Lett; 2015 Nov; 37(11):2303-10. PubMed ID: 26253301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Various
    Ren J; Shen J; Thai TD; Kim MG; Lee SH; Lim W; Na D
    J Microbiol Biotechnol; 2023 Jul; 33(7):973-979. PubMed ID: 37100763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete Genome Sequencing Analysis of Deinococcus wulumuqiensis R12, an Extremely Radiation-Resistant Strain.
    Dai Z; Zhang Z; Zhu L; Zhu Z; Jiang L
    Curr Microbiol; 2022 Aug; 79(10):292. PubMed ID: 35972568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Sequence of a Gamma- and UV-Ray-Resistant Strain, Deinococcus wulumuqiensis R12.
    Xu X; Jiang L; Zhang Z; Shi Y; Huang H
    Genome Announc; 2013 May; 1(3):. PubMed ID: 23661483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the properties of carotenoids and key carotenoid biosynthesis genes from Deinococcus xibeiensis R13.
    Chu X; Liu J; Gu W; Tian L; Tang S; Zhang Z; Jiang L; Xu X
    Biotechnol Appl Biochem; 2022 Aug; 69(4):1459-1473. PubMed ID: 34159631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence, structure, and function of the Dps DNA-binding protein from Deinococcus wulumuqiensis R12.
    Chen Y; Yang Z; Zhou X; Jin M; Dai Z; Ming D; Zhang Z; Zhu L; Jiang L
    Microb Cell Fact; 2022 Jul; 21(1):132. PubMed ID: 35780107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis.
    Yoon SH; Kim JE; Lee SH; Park HM; Choi MS; Kim JY; Lee SH; Shin YC; Keasling JD; Kim SW
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):131-9. PubMed ID: 17115209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of lycopene biosynthesis genes fused in line with Shine-Dalgarno sequences improves the stress-tolerance of Lactococcus lactis.
    Dong X; Wang Y; Yang F; Zhao S; Tian B; Li T
    Biotechnol Lett; 2017 Jan; 39(1):65-70. PubMed ID: 27677495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production.
    Hong J; Park SH; Kim S; Kim SW; Hahn JS
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):211-223. PubMed ID: 30343427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host and Pathway Engineering for Enhanced Lycopene Biosynthesis in
    Schwartz C; Frogue K; Misa J; Wheeldon I
    Front Microbiol; 2017; 8():2233. PubMed ID: 29276501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes affecting lycopene formation in Escherichia coli transformed with carotenoid biosynthetic genes: candidates for early genes in isoprenoid biosynthesis.
    Hemmi H; Ohnuma S; Nagaoka K; Nishino T
    J Biochem; 1998 Jun; 123(6):1088-96. PubMed ID: 9603997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Yield Production of Lycopene from Corn Steep Liquor and Glycerol Using the Metabolically Engineered
    Kang CK; Jeong SW; Yang JE; Choi YJ
    J Agric Food Chem; 2020 May; 68(18):5147-5153. PubMed ID: 32275417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae.
    Zhao X; Shi F; Zhan W
    Lett Appl Microbiol; 2015 Oct; 61(4):354-60. PubMed ID: 26179622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene.
    Araya-Garay JM; Feijoo-Siota L; Rosa-dos-Santos F; Veiga-Crespo P; Villa TG
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2483-92. PubMed ID: 22159890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of fermentation conditions for carotenoid production in the radiation-resistant strain Deinococcus xibeiensis R13.
    Tian L; Xu X; Jiang L; Zhang Z; Huang H
    Bioprocess Biosyst Eng; 2019 Apr; 42(4):631-642. PubMed ID: 30607611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering of Extremophilic Bacterium
    Jeong SW; Kim JH; Kim JW; Kim CY; Kim SY; Choi YJ
    Microorganisms; 2020 Dec; 9(1):. PubMed ID: 33375757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium.
    Liao Z; Zhang Y; Luo S; Suo Y; Zhang S; Wang J
    J Biotechnol; 2017 Jun; 252():1-10. PubMed ID: 28450259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.