These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29860641)

  • 1. Fitting of dynamic recurrent neural network models to sensory stimulus-response data.
    Doruk RO; Zhang K
    J Biol Phys; 2018 Sep; 44(3):449-469. PubMed ID: 29860641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the Parameters of Fitzhugh-Nagumo Neurons from Neural Spiking Data.
    Doruk RO; Abosharb L
    Brain Sci; 2019 Dec; 9(12):. PubMed ID: 31835351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Stimulus Design for Dynamic Recurrent Neural Network Models.
    Doruk RO; Zhang K
    Front Neural Circuits; 2018; 12():119. PubMed ID: 30723397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.
    Pillow JW; Ahmadian Y; Paninski L
    Neural Comput; 2011 Jan; 23(1):1-45. PubMed ID: 20964538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring Cortical Variability from Local Field Potentials.
    Cui Y; Liu LD; McFarland JM; Pack CC; Butts DA
    J Neurosci; 2016 Apr; 36(14):4121-35. PubMed ID: 27053217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations.
    Huang CG; Chacron MJ
    J Neurosci; 2016 Sep; 36(38):9859-72. PubMed ID: 27656024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks.
    Cavallari S; Panzeri S; Mazzoni A
    Front Neural Circuits; 2014; 8():12. PubMed ID: 24634645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and analysis of non-Poisson stimulus-response models of neural spiking activity.
    Barbieri R; Quirk MC; Frank LM; Wilson MA; Brown EN
    J Neurosci Methods; 2001 Jan; 105(1):25-37. PubMed ID: 11166363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network of spiking neurons that can represent interval timing: mean field analysis.
    Gavornik JP; Shouval HZ
    J Comput Neurosci; 2011 Apr; 30(2):501-13. PubMed ID: 20830512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive stimulus optimization for sensory systems neuroscience.
    DiMattina C; Zhang K
    Front Neural Circuits; 2013; 7():101. PubMed ID: 23761737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. To burst or not to burst?
    Chacron MJ; Longtin A; Maler L
    J Comput Neurosci; 2004; 17(2):127-36. PubMed ID: 15306735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coding of envelopes by correlated but not single-neuron activity requires neural variability.
    Metzen MG; Jamali M; Carriot J; Ávila-Ǻkerberg O; Cullen KE; Chacron MJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4791-6. PubMed ID: 25825717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information transmission and recovery in neural communications channels.
    Eguia MC; Rabinovich MI; Abarbanel HD
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7111-22. PubMed ID: 11102068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.
    Goense JB; Ratnam R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Oct; 189(10):741-59. PubMed ID: 12920548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of nonlinear receptive fields of visual neurons by convolutional neural network.
    Ukita J; Yoshida T; Ohki K
    Sci Rep; 2019 Mar; 9(1):3791. PubMed ID: 30846783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular adaptation facilitates sparse and reliable coding in sensory pathways.
    Farkhooi F; Froese A; Muller E; Menzel R; Nawrot MP
    PLoS Comput Biol; 2013; 9(10):e1003251. PubMed ID: 24098101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model.
    Pillow JW; Paninski L; Uzzell VJ; Simoncelli EP; Chichilnisky EJ
    J Neurosci; 2005 Nov; 25(47):11003-13. PubMed ID: 16306413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of odor stimulation on antidromic spikes in olfactory sensory neurons.
    Scott JW; Sherrill L
    J Neurophysiol; 2008 Dec; 100(6):3074-85. PubMed ID: 18842957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus-dependent relationships between behavioral choice and sensory neural responses.
    Chicharro D; Panzeri S; Haefner RM
    Elife; 2021 Apr; 10():. PubMed ID: 33825683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.