BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 29860700)

  • 1. Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants.
    Monfort O; Plesch G
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19362-19379. PubMed ID: 29860700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation.
    Zhang J; Yan M; Yuan X; Si M; Jiang L; Wu Z; Wang H; Zeng G
    J Colloid Interface Sci; 2018 Nov; 529():11-22. PubMed ID: 29879678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile preparation of bismuth vanadate-sheet/carbon nitride rod-like interface photocatalyst for efficient degradation of model organic pollutant under direct sunlight irradiation.
    Jayaraman V; Ayappan C; Mani A
    Chemosphere; 2022 Jan; 287(Pt 2):132055. PubMed ID: 34496336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced graphene oxide-mediated Z-scheme BiVO
    Clament Sagaya Selvam N; Kim YG; Kim DJ; Hong WH; Kim W; Park SH; Jo WK
    Sci Total Environ; 2018 Sep; 635():741-749. PubMed ID: 29680764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the multifunctionality in Cu-doped BiVO
    Regmi C; Kshetri YK; Pandey RP; Kim TH; Gyawali G; Lee SW
    J Environ Sci (China); 2019 Jan; 75():84-97. PubMed ID: 30473310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement in the photocatalytic antifouling efficiency over cherimoya-like InVO
    Zhang X; Zhang J; Yu J; Zhang Y; Yu F; Jia L; Tan Y; Zhu Y; Hou B
    J Colloid Interface Sci; 2019 Jan; 533():358-368. PubMed ID: 30172146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Insights into The Photoactivity of Shape-Tailored BiVO
    Kása Z; Almási EE; Hernádi K; Gyulavári T; Baia L; Veréb G; László Z; Pap Z
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled synthesis of uniform BiVO4 microcolumns and advanced visible-light-driven photocatalytic activity for the degradation of metronidazole-contained wastewater.
    Yu C; Dong S; Feng J; Sun J; Hu L; Li Y; Sun J
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2837-45. PubMed ID: 24146322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C
    Deng Y; Tang L; Feng C; Zeng G; Wang J; Zhou Y; Liu Y; Peng B; Feng H
    J Hazard Mater; 2018 Feb; 344():758-769. PubMed ID: 29161670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin.
    Yan Y; Sun S; Song Y; Yan X; Guan W; Liu X; Shi W
    J Hazard Mater; 2013 Apr; 250-251():106-14. PubMed ID: 23434486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic degradation of paracetamol on Pd-BiVO
    Wang L; Bian Z
    Chemosphere; 2020 Jan; 239():124815. PubMed ID: 31526994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol-gel method for photodegradion of methyl orange.
    Wang M; Che Y; Niu C; Dang M; Dong D
    J Hazard Mater; 2013 Nov; 262():447-55. PubMed ID: 24076480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance B doped BiVO4 photocatalyst with visible light response by citric acid complex method.
    Wang M; Zheng H; Liu Q; Niu C; Che Y; Dang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():74-9. PubMed ID: 23751222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO₄ photocatalysts.
    Bian ZY; Zhu YQ; Zhang JX; Ding AZ; Wang H
    Chemosphere; 2014 Dec; 117():527-31. PubMed ID: 25268078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of photocatalytic efficiency by in situ fabrication of BiOBr/BiVO
    Yin W; Sun X; Wang W
    J Environ Sci (China); 2017 Oct; 60():78-83. PubMed ID: 29031449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct growth of m-BiVO
    Saleem A; Ahmed T; Ammar M; Zhang HL; Xu HB; Tabassum R
    J Photochem Photobiol B; 2020 Dec; 213():112070. PubMed ID: 33142213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological guided sphere to dendrite BiVO
    Kadam AN; Babu B; Lee SW; Kim J; Yoo K
    Chemosphere; 2022 Oct; 305():135461. PubMed ID: 35764107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and photocatalytic activity of AgBr/BiVO4 composite photocatalyst.
    Song Y; Xu H; Yan J; Wang C; Cai G; Li H; Lei Y
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6816-23. PubMed ID: 25924336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO4 under simulated solar light.
    Li F; Kang Y; Chen M; Liu G; Lv W; Yao K; Chen P; Huang H
    Chemosphere; 2016 May; 150():139-144. PubMed ID: 26901469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of visible light-responsive photocatalytic paper containing BiVO
    Hua C; Liu X; Ren S; Zhang C; Liu W
    Ecotoxicol Environ Saf; 2020 Oct; 202():110897. PubMed ID: 32622307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.