These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 29861812)
1. Using microfluidic devices to study thrombosis in pathological blood flows. Herbig BA; Yu X; Diamond SL Biomicrofluidics; 2018 Jul; 12(4):042201. PubMed ID: 29861812 [TBL] [Abstract][Full Text] [Related]
2. Thrombi produced in stagnation point flows have a core-shell structure. Herbig BA; Diamond SL Cell Mol Bioeng; 2017 Dec; 10(6):515-521. PubMed ID: 29399204 [TBL] [Abstract][Full Text] [Related]
3. In microfluidico: Recreating in vivo hemodynamics using miniaturized devices. Zhu S; Herbig BA; Li R; Colace TV; Muthard RW; Neeves KB; Diamond SL Biorheology; 2015; 52(5-6):303-18. PubMed ID: 26600269 [TBL] [Abstract][Full Text] [Related]
4. Fibrin, γ'-fibrinogen, and transclot pressure gradient control hemostatic clot growth during human blood flow over a collagen/tissue factor wound. Muthard RW; Welsh JD; Brass LF; Diamond SL Arterioscler Thromb Vasc Biol; 2015 Mar; 35(3):645-54. PubMed ID: 25614284 [TBL] [Abstract][Full Text] [Related]
5. Fibrin Modulates Shear-Induced NETosis in Sterile Occlusive Thrombi Formed under Haemodynamic Flow. Yu X; Diamond SL Thromb Haemost; 2019 Apr; 119(4):586-593. PubMed ID: 30722079 [TBL] [Abstract][Full Text] [Related]
6. Contact Pathway Function During Human Whole Blood Clotting on Procoagulant Surfaces. Zhu S; Herbig BA; Yu X; Chen J; Diamond SL Front Med (Lausanne); 2018; 5():209. PubMed ID: 30083534 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic and computational study of structural properties and resistance to flow of blood clots under arterial shear. Mitrophanov AY; Govindarajan V; Zhu S; Li R; Lu Y; Diamond SL; Reifman J Biomech Model Mechanobiol; 2019 Oct; 18(5):1461-1474. PubMed ID: 31055691 [TBL] [Abstract][Full Text] [Related]
8. Establishing the Transient Mass Balance of Thrombosis: From Tissue Factor to Thrombin to Fibrin Under Venous Flow. Zhu S; Chen J; Diamond SL Arterioscler Thromb Vasc Biol; 2018 Jul; 38(7):1528-1536. PubMed ID: 29724819 [TBL] [Abstract][Full Text] [Related]
9. Flow and delta-P dictate where thrombin, fibrin, and von Willebrand Factor will be found. Diamond SL Thromb Res; 2016 May; 141 Suppl 2():S22-4. PubMed ID: 27207416 [TBL] [Abstract][Full Text] [Related]
10. Core and shell platelets of a thrombus: A new microfluidic assay to study mechanics and biochemistry. DeCortin ME; Brass LF; Diamond SL Res Pract Thromb Haemost; 2020 Oct; 4(7):1158-1166. PubMed ID: 33134782 [TBL] [Abstract][Full Text] [Related]
11. High shear dependent von Willebrand factor self-assembly fostered by platelet interaction and controlled by ADAMTS13. Kragh T; Napoleone M; Fallah MA; Gritsch H; Schneider MF; Reininger AJ Thromb Res; 2014 Jun; 133(6):1079-87. PubMed ID: 24681085 [TBL] [Abstract][Full Text] [Related]
12. Application of microfluidic devices in studies of thrombosis and hemostasis. Zhang C; Neelamegham S Platelets; 2017 Jul; 28(5):434-440. PubMed ID: 28580870 [TBL] [Abstract][Full Text] [Related]
13. Role of factor VIII-von Willebrand factor and fibronectin in the interaction of platelets in flowing blood with monomeric and fibrillar human collagen types I and III. Houdijk WP; Sakariassen KS; Nievelstein PF; Sixma JJ J Clin Invest; 1985 Feb; 75(2):531-40. PubMed ID: 3919060 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network. Zilberman-Rudenko J; Sylman JL; Lakshmanan HHS; McCarty OJT; Maddala J Cell Mol Bioeng; 2017 Feb; 10(1):16-29. PubMed ID: 28580033 [TBL] [Abstract][Full Text] [Related]
15. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Folie BJ; McIntire LV Biophys J; 1989 Dec; 56(6):1121-41. PubMed ID: 2611327 [TBL] [Abstract][Full Text] [Related]
16. Reduced model to predict thrombin and fibrin during thrombosis on collagen/tissue factor under venous flow: Roles of γ'-fibrin and factor XIa. Chen J; Diamond SL PLoS Comput Biol; 2019 Aug; 15(8):e1007266. PubMed ID: 31381558 [TBL] [Abstract][Full Text] [Related]
18. Matrix protein microarrays for spatially and compositionally controlled microspot thrombosis under laminar flow. Okorie UM; Diamond SL Biophys J; 2006 Nov; 91(9):3474-81. PubMed ID: 16905604 [TBL] [Abstract][Full Text] [Related]
19. The function of ultra-large von Willebrand factor multimers in high shear flow controlled by ADAMTS13. Reininger AJ Hamostaseologie; 2015; 35(3):225-33. PubMed ID: 25983111 [TBL] [Abstract][Full Text] [Related]
20. The subendothelium of the HMEC-1 cell line supports thrombus formation in the absence of von Willebrand factor and collagen types I, III and VI. Bonnefoy A; Harsfalvi J; Pfliegler G; Fauvel-Lafève F; Legrand C Thromb Haemost; 2001 Mar; 85(3):552-9. PubMed ID: 11307830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]