These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 29862469)
1. A variable stiffness mechanism for steerable percutaneous instruments: integration in a needle. De Falco I; Culmone C; Menciassi A; Dankelman J; van den Dobbelsteen JJ Med Biol Eng Comput; 2018 Dec; 56(12):2185-2199. PubMed ID: 29862469 [TBL] [Abstract][Full Text] [Related]
2. Manually controlled steerable needle for MRI-guided percutaneous interventions. Henken KR; Seevinck PR; Dankelman J; van den Dobbelsteen JJ Med Biol Eng Comput; 2017 Feb; 55(2):235-244. PubMed ID: 27108292 [TBL] [Abstract][Full Text] [Related]
3. Ovipositor-inspired steerable needle: design and preliminary experimental evaluation. Scali M; Pusch TP; Breedveld P; Dodou D Bioinspir Biomim; 2017 Dec; 13(1):016006. PubMed ID: 29019464 [TBL] [Abstract][Full Text] [Related]
4. Biomechanics-Based Curvature Estimation for Ultrasound-guided Flexible Needle Steering in Biological Tissues. Moreira P; Misra S Ann Biomed Eng; 2015 Aug; 43(8):1716-26. PubMed ID: 25465619 [TBL] [Abstract][Full Text] [Related]
5. Estimation of flexible needle deflection in layered soft tissues with different elastic moduli. Lee H; Kim J Med Biol Eng Comput; 2014 Sep; 52(9):729-40. PubMed ID: 25008003 [TBL] [Abstract][Full Text] [Related]
6. A novel curvature-controllable steerable needle for percutaneous intervention. Bui VK; Park S; Park JO; Ko SY Proc Inst Mech Eng H; 2016 Aug; 230(8):727-38. PubMed ID: 27206444 [TBL] [Abstract][Full Text] [Related]
7. Tissue motion due to needle deflection. Leibinger A; Burrows C; Oldfield MJ; Rodriguez Y Baena F Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1873-6. PubMed ID: 26736647 [TBL] [Abstract][Full Text] [Related]
8. Needle-tissue interactive mechanism and steering control in image-guided robot-assisted minimally invasive surgery: a review. Li P; Yang Z; Jiang S Med Biol Eng Comput; 2018 Jun; 56(6):931-949. PubMed ID: 29679255 [TBL] [Abstract][Full Text] [Related]
9. Design of an actively controlled steerable needle with tendon actuation and FBG-based shape sensing. van de Berg NJ; Dankelman J; van den Dobbelsteen JJ Med Eng Phys; 2015 Jun; 37(6):617-22. PubMed ID: 25922213 [TBL] [Abstract][Full Text] [Related]
10. Rate dependency during needle insertions with a biologically inspired steering system: an experimental study. Secoli R; Rodriguez y Baena F Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():856-9. PubMed ID: 25570094 [TBL] [Abstract][Full Text] [Related]
11. Axially rigid steerable needle with compliant active tip control. de Vries M; Sikorski J; Misra S; van den Dobbelsteen JJ PLoS One; 2021; 16(12):e0261089. PubMed ID: 34914777 [TBL] [Abstract][Full Text] [Related]
12. Robotic-Assisted Needle Steering Around Anatomical Obstacles Using Notched Steerable Needles. Khadem M; Rossa C; Usmani N; Sloboda RS; Tavakoli M IEEE J Biomed Health Inform; 2018 Nov; 22(6):1917-1928. PubMed ID: 29990280 [TBL] [Abstract][Full Text] [Related]
13. Estimating needle tip deflection in biological tissue from a single transverse ultrasound image: application to brachytherapy. Rossa C; Sloboda R; Usmani N; Tavakoli M Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1347-59. PubMed ID: 26615430 [TBL] [Abstract][Full Text] [Related]
14. Predictive mechanics-based model for depth of cut (DOC) of waterjet in soft tissue for waterjet-assisted medical applications. Babaiasl M; Boccelli S; Chen Y; Yang F; Ding JL; Swensen JP Med Biol Eng Comput; 2020 Aug; 58(8):1845-1872. PubMed ID: 32514828 [TBL] [Abstract][Full Text] [Related]
15. An adaptive finite element model for steerable needles. Terzano M; Dini D; Rodriguez Y Baena F; Spagnoli A; Oldfield M Biomech Model Mechanobiol; 2020 Oct; 19(5):1809-1825. PubMed ID: 32152795 [TBL] [Abstract][Full Text] [Related]
16. Deflection of a flexible needle during insertion into soft tissue. Abolhassani N; Patel RV Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3858-61. PubMed ID: 17946584 [TBL] [Abstract][Full Text] [Related]
17. Modeling of needle steering via duty-cycled spinning. Minhas DS; Engh JA; Fenske MM; Riviere CN Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2756-9. PubMed ID: 18002565 [TBL] [Abstract][Full Text] [Related]
18. A model to predict deflection of bevel-tipped active needle advancing in soft tissue. Datla NV; Konh B; Honarvar M; Podder TK; Dicker AP; Yu Y; Hutapea P Med Eng Phys; 2014 Mar; 36(3):285-93. PubMed ID: 24296105 [TBL] [Abstract][Full Text] [Related]
19. Endpoint Accuracy in Manual Control of a Steerable Needle. van de Berg NJ; Dankelman J; van den Dobbelsteen JJ J Vasc Interv Radiol; 2017 Feb; 28(2):276-283.e2. PubMed ID: 27720573 [TBL] [Abstract][Full Text] [Related]
20. Methods for Improving the Curvature of Steerable Needles in Biological Tissue. Adebar TK; Greer JD; Laeseke PF; Hwang GL; Okamura AM IEEE Trans Biomed Eng; 2016 Jun; 63(6):1167-77. PubMed ID: 26441438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]