These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29862480)

  • 1. Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater.
    de Repentigny C; Courcelles B; Zagury GJ
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23205-23214. PubMed ID: 29862480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centripetal filtration of groundwater to improve the lifetime of an MgO recycled refractory filter: observations and technical challenges.
    de Repentigny C; Zagury GJ; Courcelles B
    Environ Sci Pollut Res Int; 2019 May; 26(15):15314-15323. PubMed ID: 30927225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of caustic magnesia to remove cadmium, nickel, and cobalt from water in passive treatment systems: column experiments.
    Rötting TS; Cama J; Ayora C; Cortina JL; De Pablo J
    Environ Sci Technol; 2006 Oct; 40(20):6438-43. PubMed ID: 17120577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of the clogging in a MgO column used to treat a Ni- and Co-contaminated water and performance prediction for a centripetal radial column.
    de Repentigny C; Zagury GJ; Courcelles B
    Chemosphere; 2019 Dec; 236():124307. PubMed ID: 31330432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater.
    Mohammadian S; Krok B; Fritzsche A; Bianco C; Tosco T; Cagigal E; Mata B; Gonzalez V; Diez-Ortiz M; Ramos V; Montalvo D; Smolders E; Sethi R; Meckenstock RU
    J Contam Hydrol; 2021 Feb; 237():103741. PubMed ID: 33341658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive in situ remediation of metal-polluted water with caustic magnesia: evidence from column experiments.
    Cortina JL; Lagreca I; De Pablo J; Cama J; Ayora C
    Environ Sci Technol; 2003 May; 37(9):1971-7. PubMed ID: 12775073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved passive treatment of high Zn and Mn concentrations using caustic magnesia (MgO): particle size effects.
    Rötting TS; Ayora C; Carrera J
    Environ Sci Technol; 2008 Dec; 42(24):9370-7. PubMed ID: 19174918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.
    Moraci N; Calabrò PS
    J Environ Manage; 2010 Nov; 91(11):2336-41. PubMed ID: 20643500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater.
    Calabrò PS; Moraci N; Suraci P
    J Hazard Mater; 2012 Mar; 207-208():111-6. PubMed ID: 21885195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater.
    Sulaymon AH; Faisal AA; Khaliefa QM
    J Hazard Mater; 2015 Oct; 297():160-72. PubMed ID: 25956647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrous ferric oxide incorporated diatomite for remediation of arsenic contaminated groundwater.
    Jang M; Min SH; Park JK; Tlachac EJ
    Environ Sci Technol; 2007 May; 41(9):3322-8. PubMed ID: 17539544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of saw dust on borate removal from groundwater in bench-scale simulation of permeable reactive barriers including magnesium oxide.
    Sasaki K; Takamori H; Moriyama S; Yoshizaka H; Hirajima T
    J Hazard Mater; 2011 Jan; 185(2-3):1440-7. PubMed ID: 21075515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal removal capacity of individual components of permeable reactive concrete.
    Holmes RR; Hart ML; Kevern JT
    J Contam Hydrol; 2017 Jan; 196():52-61. PubMed ID: 27993468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents.
    Repo E; Kurniawan TA; Warchol JK; Sillanpää ME
    J Hazard Mater; 2009 Nov; 171(1-3):1071-80. PubMed ID: 19632777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems.
    Dries J; Bastiaens L; Springael D; Kuypers S; Agathos SN; Diels L
    Water Res; 2005 Sep; 39(15):3531-40. PubMed ID: 16095659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of mine drainage using permeable reactive barrers: column experiments.
    Waybrant KR; Ptacek CJ; Blowes DW
    Environ Sci Technol; 2002 Mar; 36(6):1349-56. PubMed ID: 11944692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments.
    Oliva J; De Pablo J; Cortina JL; Cama J; Ayora C
    J Hazard Mater; 2011 Oct; 194():312-23. PubMed ID: 21871722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency assessment of ZVI-based media as fillers in permeable reactive barrier for multiple heavy metal-contaminated groundwater remediation.
    Zhu F; Tan X; Zhao W; Feng L; He S; Wei L; Yang L; Wang K; Zhao Q
    J Hazard Mater; 2022 Feb; 424(Pt C):127605. PubMed ID: 34741938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater.
    Turner BD; Binning PJ; Sloan SW
    J Contam Hydrol; 2008 Jan; 95(3-4):110-20. PubMed ID: 17913284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.