BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29862652)

  • 1. CRISPR/Cas9-Multiplexed Editing of Chinese Hamster Ovary B4Gal-T1, 2, 3, and 4 Tailors N-Glycan Profiles of Therapeutics and Secreted Host Cell Proteins.
    Amann T; Hansen AH; Kol S; Lee GM; Andersen MR; Kildegaard HF
    Biotechnol J; 2018 Oct; 13(10):e1800111. PubMed ID: 29862652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose.
    Jansing J; Sack M; Augustine SM; Fischer R; Bortesi L
    Plant Biotechnol J; 2019 Feb; 17(2):350-361. PubMed ID: 29969180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation.
    Yin B; Gao Y; Chung CY; Yang S; Blake E; Stuczynski MC; Tang J; Kildegaard HF; Andersen MR; Zhang H; Betenbaugh MJ
    Biotechnol Bioeng; 2015 Nov; 112(11):2343-51. PubMed ID: 26154505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2018; 1850():237-257. PubMed ID: 30242691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles.
    Amann T; Hansen AH; Kol S; Hansen HG; Arnsdorf J; Nallapareddy S; Voldborg B; Lee GM; Andersen MR; Kildegaard HF
    Metab Eng; 2019 Mar; 52():143-152. PubMed ID: 30513349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment.
    Grav LM; Lee JS; Gerling S; Kallehauge TB; Hansen AH; Kol S; Lee GM; Pedersen LE; Kildegaard HF
    Biotechnol J; 2015 Sep; 10(9):1446-56. PubMed ID: 25864574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering nucleotide sugar synthesis pathways for independent and simultaneous modulation of N-glycan galactosylation and fucosylation in CHO cells.
    Prabhu A; Shanmugam D; Gadgil M
    Metab Eng; 2022 Nov; 74():61-71. PubMed ID: 36152932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9 gene editing for the creation of an MGAT1-deficient CHO cell line to control HIV-1 vaccine glycosylation.
    Byrne G; O'Rourke SM; Alexander DL; Yu B; Doran RC; Wright M; Chen Q; Azadi P; Berman PW
    PLoS Biol; 2018 Aug; 16(8):e2005817. PubMed ID: 30157178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells.
    Sergeeva D; Camacho-Zaragoza JM; Lee JS; Kildegaard HF
    Methods Mol Biol; 2019; 1961():213-232. PubMed ID: 30912048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Awakening dormant glycosyltransferases in CHO cells with CRISPRa.
    Karottki KJC; Hefzi H; Xiong K; Shamie I; Hansen AH; Li S; Pedersen LE; Li S; Lee JS; Lee GM; Kildegaard HF; Lewis NE
    Biotechnol Bioeng; 2020 Feb; 117(2):593-598. PubMed ID: 31631317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality.
    Louie S; Haley B; Marshall B; Heidersbach A; Yim M; Brozynski M; Tang D; Lam C; Petryniak B; Shaw D; Shim J; Miller A; Lowe JB; Snedecor B; Misaghi S
    Biotechnol Bioeng; 2017 Mar; 114(3):632-644. PubMed ID: 27666939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Aliyu L; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2024; 2810():249-271. PubMed ID: 38926284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells.
    Shin SW; Kim D; Lee JS
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycoengineering of Mammalian Expression Systems on a Cellular Level.
    Heffner KM; Wang Q; Hizal DB; Can Ö; Betenbaugh MJ
    Adv Biochem Eng Biotechnol; 2021; 175():37-69. PubMed ID: 29532110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans.
    Hall MK; Weidner DA; Zhu Y; Dayal S; Whitman AA; Schwalbe RA
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27304954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of intact glycopeptides reveals the impact of culture media on site-specific glycosylation of EPO-Fc fusion protein generated by CHO-GS cells.
    Wang Q; Yang G; Wang T; Yang W; Betenbaugh MJ; Zhang H
    Biotechnol Bioeng; 2019 Sep; 116(9):2303-2315. PubMed ID: 31062865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR/Cas9 based engineering strategy for overexpression of multiple genes in Chinese hamster ovary cells.
    Eisenhut P; Klanert G; Weinguny M; Baier L; Jadhav V; Ivansson D; Borth N
    Metab Eng; 2018 Jul; 48():72-81. PubMed ID: 29852271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contributions of individual galactosyltransferases to protein specific N-glycan processing in Chinese Hamster Ovary cells.
    Bydlinski N; Maresch D; Schmieder V; Klanert G; Strasser R; Borth N
    J Biotechnol; 2018 Sep; 282():101-110. PubMed ID: 30017654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and CRISPR/Cas9 Inactivation of the C1s Protease Responsible for Proteolysis of Recombinant Proteins Produced in CHO Cells.
    Li SW; Yu B; Byrne G; Wright M; O'Rourke S; Mesa K; Berman PW
    Biotechnol Bioeng; 2019 Sep; 116(9):2130-2145. PubMed ID: 31087560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.