These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29862738)

  • 1. [Finite Element Analysis of Biodegradable Polylactic Acid Stent].
    Yan W; Yao T
    Zhongguo Yi Liao Qi Xie Za Zhi; 2018 Jan; 42(1):14-17. PubMed ID: 29862738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents.
    Wang Q; Fang G; Zhao Y; Wang G; Cai T
    J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of material characteristics on the mechanical properties of a poly(L-lactide) coronary stent.
    Grabow N; Martin H; Schmitz KP
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():503-5. PubMed ID: 12451906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Finite Element Analysis of Effect of Key Dimension of Nitinol Stent on Its Fatigue Behaviour].
    Li J; Wang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Apr; 32(2):305-10. PubMed ID: 26211245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis for fatigue behaviour of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions.
    Lei L; Qi X; Li S; Yang Y; Hu Y; Li B; Zhao S; Zhang Y
    Comput Biol Med; 2019 Jan; 104():205-214. PubMed ID: 30529572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue behavior of stent in tapered arteries: The role of arterial tapering and stent material.
    Shen X; Zhu H; Ji S; Jiang J; Deng Y
    Proc Inst Mech Eng H; 2019 Oct; 233(10):989-998. PubMed ID: 31277553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Finite element analysis for compression and expansion behavior of magnesium stent].
    Chen H; Liu X; Yuan G; Zhang L; Li Z; Luo Q; Lin F
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 May; 38(3):161-4, 176. PubMed ID: 25241506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent.
    Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M
    J Biomech; 2015 Jul; 48(10):2012-8. PubMed ID: 25907549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model.
    Peng K; Cui X; Qiao A; Mu Y
    Biomed Eng Online; 2019 Apr; 18(1):39. PubMed ID: 30940146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure design and mechanical performance analysis of three kinds of bioresorbable poly-lactic acid (PLA) stents.
    Wang Y; Wu H; Fan S; Wu J; Yang S
    Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):25-37. PubMed ID: 35341394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable performance of PLA stents affected by geometrical parameters: The risk of fracture and fragment separation.
    Khalaj Amnieh S; Mashayekhi M; Shahnooshi E; Tavafoghi M; Mosaddegh P
    J Biomech; 2021 Jun; 122():110489. PubMed ID: 33964575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method.
    Liu Y; Zhu G; Yang H; Wang C; Zhang P; Han G
    J Mech Behav Biomed Mater; 2018 Jan; 77():157-163. PubMed ID: 28917130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate.
    Song K; Bi Y; Zhao H; Wu T; Xu F; Zhao G
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2754-2764. PubMed ID: 32154984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The differences between surface degradation and bulk degradation of FEM on the prediction of the degradation time for poly (lactic-co-glycolic acid) stent.
    Yang X; Zhang W; Yao J; Sun A; Gao Y; Guo M; Fan Y
    Comput Methods Biomech Biomed Engin; 2022 Jan; 25(1):65-72. PubMed ID: 34582282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filling the void: a coalescent numerical and experimental technique to determine aortic stent graft mechanics.
    De Bock S; Iannaccone F; De Beule M; Van Loo D; Vermassen F; Verhegghe B; Segers P
    J Biomech; 2013 Sep; 46(14):2477-82. PubMed ID: 23953501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ investigation of stress conditions during expansion of bare metal stents and PLLA-coated stents using the XRD sin(2)ψ-technique.
    Kowalski W; Dammer M; Bakczewitz F; Schmitz KP; Grabow N; Kessler O
    J Mech Behav Biomed Mater; 2015 Sep; 49():23-9. PubMed ID: 25974098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical characteristics of self-expanding sinus stents during crimping and deployment_A comparison between different biomaterials.
    Lu YC; Hsu LI; Lin CF; Hsu CP; Chang TK; Cheng CC; Huang CH
    J Mech Behav Biomed Mater; 2023 Feb; 138():105669. PubMed ID: 36634436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.